3D Rock Structure Digital Characterization Using Airborne LiDAR and Unmanned Aerial Vehicle Techniques for Stability Analysis of a Blocky Rock Mass Slope

Qiang Xu, Zhen Ye*, Qian Liu, Xiujun Dong, Weile Li, Shanao Fang, Chen Guo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Airborne light detection and ranging (LiDAR) and unmanned aerial vehicle-structure from motion (UAV-SfM) provide point clouds with unprecedented resolution and accuracy that are well suited for the digital characterization of rock outcrops where direct contact measurements cannot be obtained due to terrain or safety constraints. Today, however, how to better apply these techniques to the practice of geostructural analysis is a topic of research that must be further explored. This study presents a processing procedure for extracting three-dimensional (3D) rock structure parameters directly from point clouds using open-source software and a three-dimensional distinct element code-assisted (3DEC) simulation of slope failure based on carbonate rock cliffs in the Jiuzhaigou Scenic Area. The procedure involves (1) processing point clouds obtained with different remote sensing techniques; (2) using the Hough transform to estimate normals for the hue, saturation, and value (HSV) rendering of unstructured point clouds; (3) automatically clustering and extracting the set-based point clouds; (4) estimating set-based geometric parameters; and (5) performing a subsequent stability analysis based on rock structure parameters. The results show that integrating different remote sensing techniques and rock structure computing can provide a quick way for slope engineers to assess the safety of blocky rock masses.
Original languageEnglish
Article number3044
JournalRemote Sensing
Volume14
Issue number13
DOIs
Publication statusPublished - 1 Jul 2022

Keywords

  • 3D rock structure
  • airborne LiDAR
  • point clouds
  • rock kinematics
  • UAV

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Fingerprint

Dive into the research topics of '3D Rock Structure Digital Characterization Using Airborne LiDAR and Unmanned Aerial Vehicle Techniques for Stability Analysis of a Blocky Rock Mass Slope'. Together they form a unique fingerprint.

Cite this