A viscoelastic model for human myocardium

David Nordsletten*, Adela Capilnasiu, Will Zhang, Anna Wittgenstein, Myrianthi Hadjicharalambous, Gerhard Sommer, Ralph Sinkus, Gerhard A. Holzapfel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Understanding the biomechanics of the heart in health and disease plays an important role in the diagnosis and treatment of heart failure. The use of computational biomechanical models for therapy assessment is paving the way for personalized treatment, and relies on accurate constitutive equations mapping strain to stress. Current state-of-the art constitutive equations account for the nonlinear anisotropic stress-strain response of cardiac muscle using hyperelasticity theory. While providing a solid foundation for understanding the biomechanics of heart tissue, most current laws neglect viscoelastic phenomena observed experimentally. Utilizing experimental data from human myocardium and knowledge of the hierarchical structure of heart muscle, we present a fractional nonlinear anisotropic viscoelastic constitutive model. The model is shown to replicate biaxial stretch, triaxial cyclic shear and triaxial stress relaxation experiments (mean error ∼7.68%), showing improvements compared to its hyperelastic (mean error ∼24%) counterparts. Model sensitivity, fidelity and parameter uniqueness are demonstrated. The model is also compared to rate-dependent biaxial stretch as well as different modes of biaxial stretch, illustrating extensibility of the model to a range of loading phenomena. Statement of Significance: The viscoelastic response of human heart tissues has yet to be integrated into common constitutive models describing cardiac mechanics. In this work, a fractional viscoelastic modeling approach is introduced based on the hierarchical structure of heart tissue. From these foundations, the current state-of-the-art biomechanical models of the heart muscle are transformed using fractional viscoelasticity, replicating passive muscle function across multiple experimental tests. Comparisons are drawn with current models to highlight the improvements of this approach and predictive responses show strong qualitative agreement with experimental data. The proposed model presents the first constitutive model aimed at capturing viscoelastic nonlinear response across multiple testing regimes, providing a platform for better understanding the biomechanics of myocardial tissue in health and disease.

Original languageEnglish
Pages (from-to)441-457
Number of pages17
JournalActa Biomaterialia
Publication statusPublished - Nov 2021


  • Cardiac mechanics
  • Human ventricular myocardium
  • Large deformation
  • Passive mechanical behavior
  • Tissue mechanics
  • Viscoelasticity

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology


Dive into the research topics of 'A viscoelastic model for human myocardium'. Together they form a unique fingerprint.

Cite this