Abstract
PURPOSE: To introduce new solution methods for the Bloch and Bloch-McConnell equations and compare them quantitatively to different known approaches.
THEORY AND METHODS: A new exact solution per time step is derived by means of eigenvalues and generalized eigenvectors. Fast numerical solution methods based on asymmetric and symmetric operator splitting, which are already known for the Bloch equations, are extended to the Bloch-McConnell equations. Those methods are compared to other numerical methods including spin domain, one-step and multi-step methods, and matrix exponential. Error metrics are introduced based on the exact solution method, which allows to assess the accuracy of each solution method quantitatively for arbitrary example data.
RESULTS: Accuracy and performance properties for nine different solution methods are analyzed and compared in extensive numerical experiments including various examples for non-selective and slice-selective MR imaging applications. The accuracy of the methods heavily varies, in particular for short relaxation times and long pulse durations.
CONCLUSION: In absence of relaxation effects, the numerical results confirm the rotation matrices approach as accurate and computationally efficient Bloch solution method. Otherwise, as well as for the Bloch-McConnell equations, symmetric operator splitting methods are recommended due to their excellent numerical accuracy paired with efficient run time.
Original language | English |
---|---|
Article number | 107011 |
Journal | Journal of Magnetic Resonance |
Volume | 329 |
DOIs | |
Publication status | Published - Aug 2021 |
Keywords
- Bloch equations
- Bloch-McConnell equations
- Exact solution
- Magnetic resonance imaging
- Numerical solution
- Operator splitting
ASJC Scopus subject areas
- Condensed Matter Physics
- Nuclear and High Energy Physics
- Biophysics
- Biochemistry