An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load

Anna Pukaluk, Anna-Sophie Wittgenstein, Gerd Leitinger, Dagmar Kolb, Dominique Pernitsch, Sarah Anna Schneider, Patrick Knöbelreiter, Verena Horak, Kristian Bredies, Gerhard Holzapfel, Thomas Pock, Gerhard Sommer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

An insight into changes of soft biological tissue ultrastructures under loading conditions is essential to understand their response to mechanical stimuli. Therefore, this study offers an approach to investigate the arrangement of collagen fibrils and proteoglycans (PGs), which are located within the mechanically loaded aortic wall. The human aortic samples were either fixed directly with glutaraldehyde in the load-free state or subjected to a planar biaxial extension test prior to fixation. The aortic ultrastructure was recorded using electron tomography. Collagen fibrils and PGs were segmented using convolutional neural networks, particularly the ESPNet model. The 3D ultrastructural reconstructions revealed a complex organization of collagen fibrils and PGs. In particular, we observed that not all PGs are attached to the collagen fibrils, but some fill the spaces between the fibrils with a clear distance to the collagen. The complex organization cannot be fully captured or can be severely misinterpreted in 2D. The approach developed opens up practical possibilities, including the quantification of the spatial relationship between collagen fibrils and PGs as a function of the mechanical load. Such quantification can also be used to compare tissues under different conditions, e.g., healthy and diseased, to improve or develop new material models.
Original languageEnglish
Pages (from-to)300-314
JournalActa Biomaterialia
Volume141
DOIs
Publication statusPublished - 2022

Keywords

  • Human aorta
  • Collagen fibrils and proteoglycans
  • Biaxial extension test
  • Electron tomography
  • Segmentation

Fingerprint

Dive into the research topics of 'An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load'. Together they form a unique fingerprint.

Cite this