TY - JOUR
T1 - Anisotropic residual stresses in arteries
AU - Sigaeva, Taisiya
AU - Sommer, Gerhard
AU - Holzapfel, Gerhard A
AU - Di Martino, Elena S
PY - 2019/2/28
Y1 - 2019/2/28
N2 - The paper provides a deepened insight into the role of anisotropy in the analysis of residual stresses in arteries. Residual deformations are modelled following Holzapfel and Ogden (Holzapfel and Ogden 2010, J. R. Soc. Interface 7, 787-799. ( doi:10.1098/rsif.2009.0357 )), which is based on extensive experimental data on human abdominal aortas (Holzapfel et al. 2007, Ann. Biomed. Eng. 35, 530-545. ( doi:10.1007/s10439-006-9252-z )) and accounts for both circumferential and axial residual deformations of the individual layers of arteries-intima, media and adventitia. Each layer exhibits distinctive nonlinear and anisotropic mechanical behaviour originating from its unique microstructure; therefore, we use the most general form of strain-energy function (Holzapfel et al. 2015, J. R. Soc. Interface 12, 20150188. ( doi:10.1098/rsif.2015.0188 )) to derive residual stresses for each layer individually. Finally, the systematic experimental data (Niestrawska et al. 2016, J. R. Soc. Interface 13, 20160620. ( doi:10.1098/rsif.2016.0620 )) on both mechanical and structural properties of the different layers of the human abdominal aorta facilitate our discussion on (i) the importance of anisotropy in modelling residual stresses; (ii) the variability of residual stresses within the same class of tissue, the abdominal aorta; (iii) the limitations of conventional opening angle method to account for complex residual deformations; and (iv) the effect of residual stresses on the loaded configuration of the aorta mimicking in vivo conditions.
AB - The paper provides a deepened insight into the role of anisotropy in the analysis of residual stresses in arteries. Residual deformations are modelled following Holzapfel and Ogden (Holzapfel and Ogden 2010, J. R. Soc. Interface 7, 787-799. ( doi:10.1098/rsif.2009.0357 )), which is based on extensive experimental data on human abdominal aortas (Holzapfel et al. 2007, Ann. Biomed. Eng. 35, 530-545. ( doi:10.1007/s10439-006-9252-z )) and accounts for both circumferential and axial residual deformations of the individual layers of arteries-intima, media and adventitia. Each layer exhibits distinctive nonlinear and anisotropic mechanical behaviour originating from its unique microstructure; therefore, we use the most general form of strain-energy function (Holzapfel et al. 2015, J. R. Soc. Interface 12, 20150188. ( doi:10.1098/rsif.2015.0188 )) to derive residual stresses for each layer individually. Finally, the systematic experimental data (Niestrawska et al. 2016, J. R. Soc. Interface 13, 20160620. ( doi:10.1098/rsif.2016.0620 )) on both mechanical and structural properties of the different layers of the human abdominal aorta facilitate our discussion on (i) the importance of anisotropy in modelling residual stresses; (ii) the variability of residual stresses within the same class of tissue, the abdominal aorta; (iii) the limitations of conventional opening angle method to account for complex residual deformations; and (iv) the effect of residual stresses on the loaded configuration of the aorta mimicking in vivo conditions.
U2 - 10.1098/rsif.2019.0029
DO - 10.1098/rsif.2019.0029
M3 - Article
C2 - 30958201
VL - 16
SP - 20190029
JO - Journal of the Royal Society - Interface
JF - Journal of the Royal Society - Interface
SN - 1742-5689
IS - 151
ER -