TY - JOUR
T1 - Anisotropy of the high-power piezoelectric properties of Pb(Zr,Ti)O3
AU - Slabki, Mihail
AU - Wu, Jiang
AU - Weber, Michael
AU - Breckner, Patrick
AU - Isaia, Daniel
AU - Nakamura, Kentaro
AU - Koruza, Jurij
N1 - Funding Information:
The work was partially supported by the DAAD PPP project Nr. 57402439, funded by the German Federal Ministry of Education and Research (BMBF). J.K. acknowledges the financial support from the Athene Young Investigator program (Technische Universität Darmstadt).
Publisher Copyright:
© 2019 The American Ceramic Society
PY - 2019
Y1 - 2019
N2 - Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase. Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase.
AB - Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase. Piezoceramics are widely-used in high-power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three-stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high-power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase.
UR - http://www.scopus.com/inward/record.url?scp=85064718839&partnerID=8YFLogxK
U2 - 10.1111/jace.16464
DO - 10.1111/jace.16464
M3 - Article
AN - SCOPUS:85064718839
SN - 0002-7820
VL - 102
SP - 6008
EP - 6017
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 10
ER -