Abstract
Pesticide application can be accompanied by harmful non-target effects that affect humans, animals, as well as whole ecosystems. However, such effects remain mainly unaddressed in connection with microorganisms, and especially bacteria therein, which are essential for ecosystem functioning and host health. We analysed bacterial communities by sequencing 16S rRNA gene fragment amplicons following spray application of a broad-spectrum fungicide based on the active ingredient N-(3,5-dichlorophenyl) succinimide on Nicotiana tabacum L. leaves. The plant's phyllosphere was predominantly colonized by Proteobacteria, with Alphaproteobacteria accounting for up to 33.8% of the indigenous bacterial community. Bioinformatic analyses indicated that pesticide applications had an effect on the core microbiome as well as the rare microbiome. Moreover, the interference of the pesticide with phyllosphere bacteria was found to be selective. We have identified four positive responders including an ASV assigned to the genus Acinetobacter and 12 negative responders mainly assigned to bacterial genera known for beneficial plant-microbe interactions, including Stenotrophomonas, Sphingomonas, Flavobacterium and Serratia. Complementary inference of bacterial functioning on community level indicated that microbes with distinct stress response systems were likely enriched in the conducted treatments. The overall findings confirmed that pesticide treatments can induce measureable shifts in non-target bacterial communities colonizing the plant phyllosphere. They also indicate that potentially beneficial bacteria, which are known for their intrinsic association with plants, are among the most sensitive responders to the employed fungicide and thus highlight the importance of off-target studies in the context of the plant microbiome.
Original language | English |
---|---|
Article number | 141799 |
Journal | Science of the Total Environment |
Volume | 751 |
DOIs | |
Publication status | Published - 2021 |
Keywords
- Bacterial communities
- Off-target effects
- Pesticides
- Phyllosphere
- Plant microbiome
ASJC Scopus subject areas
- Pollution
- Waste Management and Disposal
- Environmental Engineering
- Environmental Chemistry