Barcodes of Towers and a Streaming Algorithm for Persistent Homology

Michael Kerber, Hannah Schreiber

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

Abstract

A tower is a sequence of simplicial complexes connected by simplicial maps. We show how to compute a filtration, a sequence of nested simplicial complexes, with the same persistent barcode as the tower. Our approach is based on the coning strategy by Dey et al. (SoCG 2014). We show that a variant of this approach yields a filtration that is asymptotically only marginally larger than the tower and can be efficiently computed by a streaming algorithm, both in theory and in practice. Furthermore, we show that our approach can be combined with a streaming algorithm to compute the barcode of the tower via matrix reduction. The space complexity of the algorithm does not depend on the length of the tower, but the maximal size of any subcomplex within the tower. Experimental evaluations show that our approach can efficiently handle towers with billions of complexes.
Original languageEnglish
Title of host publication33rd International Symposium on Computational Geometry (SoCG 2017)
PublisherSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Pages57:1-57:16
Number of pages16
Volume77
EditionLIPICS
ISBN (Electronic)978-3-95977-038-5
Publication statusPublished - 2017

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Dive into the research topics of 'Barcodes of Towers and a Streaming Algorithm for Persistent Homology'. Together they form a unique fingerprint.

Cite this