Projects per year
Abstract
Background
mcl-PHA biosynthesis by Pseudomonas citronellolis from tallow-based biodiesel as inexpensive carbon feed stock was accomplished. Fermentation protocols, kinetic analysis, an efficient product recovery strategy, and a detailed product characterization are presented.
Results
A maximum specific growth rate, μmax. of 0.10 and 0.08 h−1, respectively, was achieved in two different fermentation set-ups. Volumetric productivity for mcl-PHA amounted to 0.036 g/L h and 0.050 g/L h, final intracellular PHA contents calculated from the sum of active biomass and PHA to 20.1 and 26.6 wt.%, respectively. GC-FID analysis showed that the obtained biopolyester predominantly consists of 3-hydroxyoctanoate and 3-hydroxydecanoate, and, to a minor extent, 3-hydroxydodecanoate, 3-hydroxynonanoate, 3-hydroxyhexanoate, and 3-hydroxyheptanoate monomers. This was confirmed by 1H- and 13C NMR, also evidencing the occurrence of low quantities of unsaturated and 3-hydroxyvalerate building blocks. High purity of the recovered materials was proofed by elemental analysis. Regarding the results from thermogravimetric analysis, differential scanning calorimetry and molecular mass determination, results were in a range typical for this type of PHA (1st fermentation: decomposition temperature Td = 296 °C, peak of melting range Tm = 48.6 °C; glass transition temperature Tg = −46.9 °C, degree of crystallinity Xc = 12.3%, Mw = 66,000, Mn = 35,000, dispersity index Pi = 1.9; 2nd fermentation: Td = 295 °C, Tm = 53.6 °C, Tg = -43.5 °C, Xc = 10.4%, Mw = 78,000, Mn = 196,000, Pi = 2.5).
mcl-PHA biosynthesis by Pseudomonas citronellolis from tallow-based biodiesel as inexpensive carbon feed stock was accomplished. Fermentation protocols, kinetic analysis, an efficient product recovery strategy, and a detailed product characterization are presented.
Results
A maximum specific growth rate, μmax. of 0.10 and 0.08 h−1, respectively, was achieved in two different fermentation set-ups. Volumetric productivity for mcl-PHA amounted to 0.036 g/L h and 0.050 g/L h, final intracellular PHA contents calculated from the sum of active biomass and PHA to 20.1 and 26.6 wt.%, respectively. GC-FID analysis showed that the obtained biopolyester predominantly consists of 3-hydroxyoctanoate and 3-hydroxydecanoate, and, to a minor extent, 3-hydroxydodecanoate, 3-hydroxynonanoate, 3-hydroxyhexanoate, and 3-hydroxyheptanoate monomers. This was confirmed by 1H- and 13C NMR, also evidencing the occurrence of low quantities of unsaturated and 3-hydroxyvalerate building blocks. High purity of the recovered materials was proofed by elemental analysis. Regarding the results from thermogravimetric analysis, differential scanning calorimetry and molecular mass determination, results were in a range typical for this type of PHA (1st fermentation: decomposition temperature Td = 296 °C, peak of melting range Tm = 48.6 °C; glass transition temperature Tg = −46.9 °C, degree of crystallinity Xc = 12.3%, Mw = 66,000, Mn = 35,000, dispersity index Pi = 1.9; 2nd fermentation: Td = 295 °C, Tm = 53.6 °C, Tg = -43.5 °C, Xc = 10.4%, Mw = 78,000, Mn = 196,000, Pi = 2.5).
Original language | English |
---|---|
Pages (from-to) | 1391-1398 |
Journal | Reactive & Functional Polymers |
Volume | 73 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2013 |
Fields of Expertise
- Human- & Biotechnology
Treatment code (Nähere Zuordnung)
- Basic - Fundamental (Grundlagenforschung)
- My Favorites
- Application
- Experimental
Fingerprint
Dive into the research topics of 'Biodegradable Latexes from Animal-Derived Waste: Biosynthesis and Characterization of mcl-PHA accumulated by Ps. citronellolis'. Together they form a unique fingerprint.Projects
- 1 Finished
-
EU - ANIMPOL - Biotechnological conversion of carbon containing wastes for eco-efficient production of high added value products
Narodoslawsky, M., Koller, M., Schnitzer, H. & Nidetzky, B.
1/01/10 → 31/12/12
Project: Research project