Abstract
We prove that the generalized moment-cumulant relations introduced in [arXiv:1711.00219] are given by the action of the Eulerian idempotents on the Solomon-Tits algebras, whose direct sum builds up the Hopf algebra of Word Quasi-Symmetric Functions $\WQSym$. We prove $t$-analogues of these identities (in which the coefficient of $t$ gives back the original version), and a similar $t$-analogue of Goldberg's formula for the coefficients of the Hausdorff series. This amounts to the determination of the action of all the Eulerian idempotents on a product of exponentials.
Original language | Undefined/Unknown |
---|---|
Publication status | Published - 3 Jun 2020 |
Keywords
- math.CO
- math.PR