Combining baffles and secondary porous layers for performance enhancement of proton exchange membrane fuel cells

Luka Mihanović, Željko Penga*, Lei Xing*, Viktor Hacker

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A numerical study is conducted to compare the current most popular flow field configurations, porous, biporous, porous with baffles, Toyota 3D fine-mesh, and traditional rectangular flow field. Operation at high current densities is considered to elucidate the effect of the flow field designs on the overall heat transfer and liquid water removal. A comprehensive 3D, multiphase, nonisothermal computational fluid dynamics model is developed based on up-to-date heat and mass transfer sub-models, incorporating the complete formulation of the Forchheimer inertial effect and the permeability ratio of the biporous layers. The porous and baffled flow field improves the cell performance by minimizing mass transport losses, enhancing the water removal from the diffusion layers. The baffled flow field is chosen for optimization owing to the simple design and low manufacturing cost. A total of 49 configurations were mutually compared in the design of experiments to show the quantitative effect of each parameter on the performance of the baffled flow field. The results elucidate the significant influence of small geometry modifications on the overall heat and mass transfer. The results of different cases have shown that water saturation can be decreased by up to 33.59% and maximal temperature by 7.91 °C when compared to the reference case which is already characterized by very high performance. The most influencing geometry parameters of the baffles on the cell performance are revealed. The best case of the 49 studied cases is further optimized by introducing a linear scaling factor. Additional geometry modifications demonstrate that the gain in performance can be increased, but at a cost of higher pressure drop and increased design complexity. The conclusions of this work aids in the development of compact and high-performance proton exchange membrane fuel cell stacks
Original languageEnglish
Article number3675
JournalEnergies
Volume14
Issue number12
DOIs
Publication statusPublished - 2 Jun 2021

Keywords

  • Baffle geometry optimization
  • Biporous layer
  • Computational fluid dynamics
  • Forchheimer inertial effect
  • Proton‐exchange membrane fuel cells

ASJC Scopus subject areas

  • Control and Optimization
  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment

Fields of Expertise

  • Mobility & Production

Fingerprint

Dive into the research topics of 'Combining baffles and secondary porous layers for performance enhancement of proton exchange membrane fuel cells'. Together they form a unique fingerprint.

Cite this