## Abstract

In this paper we investigate the connectedness and the isomorphism problems for zig-zag products of two graphs. A sufficient condition for the zig-zag product of two graphs to be connected is provided, reducing to the study of the connectedness property of a new graph which depends only on the second factor of the graph product. We show that, when the second factor is a cycle graph, the study of the isomorphism problem for the zig-zag product is equivalent to the study of the same problem for the associated pseudo-replacement graph. The latter is defined in a natural way, by a construction generalizing the classical replacement product, and its degree is smaller than the degree of the zig-zag product graph.

Two particular classes of products are studied in detail: the zig-zag product of a complete graph with a cycle graph, and the zig-zag product of a 4-regular graph with the cycle graph of length 4. Furthermore, an example coming from the theory of Schreier graphs associated with the action of self-similar groups is also considered: the graph products are completely determined and their spectral analysis is developed.

Two particular classes of products are studied in detail: the zig-zag product of a complete graph with a cycle graph, and the zig-zag product of a 4-regular graph with the cycle graph of length 4. Furthermore, an example coming from the theory of Schreier graphs associated with the action of self-similar groups is also considered: the graph products are completely determined and their spectral analysis is developed.

Original language | English |
---|---|

Pages (from-to) | 120 |

Number of pages | 151 |

Journal | Journal of Graph Theory |

Volume | 83 |

Issue number | 2 |

DOIs | |

Publication status | Published - 2016 |

## Fields of Expertise

- Information, Communication & Computing

## Treatment code (Nähere Zuordnung)

- Theoretical