Projects per year
Abstract
Background: Seed endophytes have a significant impact on plant health and fitness. They can be inherited and passed on to the next plant generation. However, the impact of breeding on their composition in seeds is less understood. Here, we studied the indigenous seed microbiome of a recently domesticated perennial grain crop (Intermediate wheatgrass, Thinopyrum intermedium L.) that promises great potential for harnessing microorganisms to enhance crop performance by a multiphasic approach, including amplicon and strain libraries, as well as molecular and physiological assays. Results: Intermediate wheatgrass seeds harvested from four field sites in Europe over three consecutive years were dominated by Proteobacteria (88%), followed by Firmicutes (10%). Pantoea was the most abundant genus and Pantoea agglomerans was identified as the only core taxon present in all samples. While bacterial diversity and species richness were similar across all accessions, the relative abundance varied especially in terms of low abundant and rare taxa. Seeds from four different breeding cycles (TLI C3, C5, C704, C801) showed significant differences in bacterial community composition and abundance. We found a decrease in the relative abundance of the functional genes nirK and nifH as well as a drop in bacterial diversity and richness. This was associated with a loss of amplicon sequence variants (ASVs) in Actinobacteria, Alphaproteobacteria, and Bacilli, which could be partially compensated in offspring seeds, which have been cultivated at a new site. Interestingly, only a subset assigned to potentially beneficial bacteria, e.g. Pantoea, Kosakonia, and Pseudomonas, was transmitted to the next plant generation or shared with offspring seeds. Conclusion: Overall, this study advances our understanding of the assembly and transmission of endophytic seed microorganisms in perennial intermediate wheatgrass and highlights the importance of considering the plant microbiome in future breeding programs.
Original language | English |
---|---|
Article number | 40 |
Journal | Environmental Microbiome |
Volume | 19 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2024 |
Keywords
- Amplicon sequencing
- Endophytes
- Perennial grain
- Plant breeding
- Seed microbiome
ASJC Scopus subject areas
- Microbiology
- Applied Microbiology and Biotechnology
- Genetics
Fingerprint
Dive into the research topics of 'Determining the footprint of breeding in the seed microbiome of a perennial cereal'. Together they form a unique fingerprint.Projects
- 1 Finished
-
FWF - Getreidepflanzen - NAPERDIV - Nature-based perennial grain cropping as a model to safeguard functional biodiversity
Cernava, T. (Co-Investigator (CoI))
1/02/21 → 30/01/24
Project: Research project