Development and mechanical characterization of decellularized scaffolds for an active aortic graft

Francesco Giovanniello, Meisam Asgari, Ivan D. Breslavsky, Giulio Franchini, Gerhard A. Holzapfel, Maryam Tabrizian, Marco Amabili*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Decellularized porcine aortas are proposed as scaffolds for revolutionary active aortic grafts. A change in the static and dynamic mechanical properties, associated with the microstructure of elastin and collagen fibers, corresponds to alteration in the cyclic expansion and perfusion, in addition to possible graft damage. Therefore, the present study thoroughly investigates the mechanical response of the decellularized scaffolds of human and porcine origin to static and dynamic mechanical loads. The responses of the native human and porcine aortas are also compared; this is unavailable in the literature. Because the aorta is subjected to pulsatile blood pressure, dynamical responses to cyclic loads and their associated viscoelastic properties are particularly relevant for advanced graft design. In parallel, this study examines the microstructure of the decellularized aorta. The resulting data are compared to the analogous data obtained for the native human and porcine tissues. The results indicate that by using an optimized decellularization protocol – based on sodium dodecyl sulfate (SDS) and DNase – that minimizes mechanical and structural changes of the tissue, layered scaffolds with static and dynamic properties very similar to natural human aortas are obtained. In particular, a decellularized porcine aorta is non-inferior to a decellularized human aorta. Statement of significance: About 55,000 patients undergo abdominal aortic aneurysm repair annually in the USA. The currently implanted grafts present a large mechanical mismatch with the native tissue. This increases the pulsatile nature of the blood flow with negative consequences to the organ perfusion. For this reason, biomimetic and mechanically compatible grafts for aortic repair are urgently needed and they can be obtained through tissue engineering. In this study, scaffolds from porcine and human aortas are obtained from an optimized decellularization protocol. They are accurately compared to the native tissue and present the ideal static and dynamic mechanical properties for developing innovative aortic grafts.

Original languageEnglish
Pages (from-to)59-72
Number of pages14
JournalActa Biomaterialia
Volume160
DOIs
Publication statusPublished - 1 Apr 2023

Keywords

  • Aortic graft
  • Decellularized aorta
  • Human aorta
  • Mechanical characterization
  • Scaffold

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Development and mechanical characterization of decellularized scaffolds for an active aortic graft'. Together they form a unique fingerprint.

Cite this