Projects per year
Abstract
Original language | English |
---|---|
Article number | 480 |
Number of pages | 25 |
Journal | Energies |
Volume | 15 |
Issue number | 2 |
DOIs | |
Publication status | Published - 10 Jan 2022 |
Keywords
- Convolutional neural network
- Driver drowsiness
- ECG signals
- Heart rate variability
- Wavelet scalogram
- ECG signal
ASJC Scopus subject areas
- Automotive Engineering
- Control and Optimization
- Energy (miscellaneous)
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering
- Fuel Technology
- Renewable Energy, Sustainability and the Environment
Fields of Expertise
- Mobility & Production
Treatment code (Nähere Zuordnung)
- Application
Fingerprint
Dive into the research topics of 'Driver Monitoring of Automated Vehicles by Classification of Driver Drowsiness using a Deep Convolutional Neural Network Trained by Scalograms of ECG Signals'. Together they form a unique fingerprint.-
DVS: Vehicle Dynamics
Koglbauer, I. V., Lex, C., Shao, L., Semmer, M., Rogic, B., Peer, M., Hackl, A., Sternat, A. S., Schabauer, M., Samiee, S., Eichberger, A., Ager, M., Malić, D., Wohlfahrter, H., Scherndl, C., Magosi, Z. F., Orucevic, F., Puščul, D., Arefnezhad, S., Karoshi, P., Schöttel, C. E., Pandurevic, A., Harcevic, A., Wellershaus, C., Li, H., Mihalj, T., Kanuric, T., Gu, Z., Wallner, D., De Cristofaro, F., Soboleva, K., Nalic, D., Bernsteiner, S., Kraus, H., Zhao, Y., Bodner, J., Bui, D. T., Hirschberg, W., Plöckinger, M. & Khoshnood Sarabi, N.
1/01/11 → 31/12/24
Project: Research area
-
WACHsens - Evaluation of driver performance in semi-automated driving by physiologic, driver behavior and video based sensors
1/05/17 → 30/04/19
Project: Research project
Prizes
-
Research Data Management (RDM) Marketplace
Arefnezhad, Sadegh (Recipient) & Eichberger, Arno (Recipient), 28 Oct 2020
Prize: Prizes / Medals / Awards
File -
Respect for diversity: TU Graz diversity awards
Arefnezhad, Sadegh (Recipient), 21 Nov 2019
Prize: Prizes / Medals / Awards
File
-
Deep Learning for Driver Drowsiness Classification for safe vehicle application
Arefnezhad, S. & Eichberger, A., 2023, Deep Learning and Its Applications for Vehicle Networks. Hu, F. & Rasheed, I. (eds.). CRC Press, p. 17-37 21 p.Research output: Chapter in Book/Report/Conference proceeding › Chapter › peer-review
-
Driver Drowsiness Detection using Deep Neural Networks
Arefnezhad, S., Eichberger, A., Frühwirth, M., Koglbauer, I. V. & Kaufmann, C., 2022.Research output: Contribution to conference › Poster
-
Driver Drowsiness Estimation Using EEG Signals with a Dynamical Encoder-Decoder Modeling Framework
Arefnezhad, S., Hamet, J., Eichberger, A., Frühwirth, M., Ischebeck, A., Koglbauer, I. V., Moser, M. & Yousefi, A., Dec 2022, In: Scientific Reports. 12, 1, 1 p., 2650.Research output: Contribution to journal › Article › peer-review
Open Access