Abstract
Highly specific targeted drug delivery devices can be obtained with antibody-human serum albumin (mAb-HSA) conjugates. However, their conventional production involves several reaction steps including chemical modification and activation of both proteins followed by cross-linking often involving toxic chemicals. Here, we describe the enzymatic synthesis of mAb-HSA conjugates for targeted drug delivery devices using tyrosinase from Agaricus bisporus under mild reaction conditions (pH 6.8, 25 °C). Reaction conditions were optimized by using fluorescence labeled HSA to facilitate SDS-PAGE analysis with fluorescence scanning. Enzymatic cross-linking in the presence of natural low molecular weight phenolic compounds (e.g. caffeic acid) resulted in reaction products in the molecular weight range of ∼216 kDa, corresponding to mAb-HSA conjugates. The composition of the conjugates was confirmed with tryptic digestion followed by LC-MS/MS analysis of the resulting peptide fragments. Successful binding of mAb-HSA conjugates (in contrast to free HSA) to MHC II molecules, located on antigen-presenting cells, was demonstrated by both ELISA and flow cytometry analysis.
Original language | English |
---|---|
Pages (from-to) | 1460-1467 |
Journal | RSC Advances |
Volume | 3 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2013 |
Fields of Expertise
- Human- & Biotechnology