Experimental and numerical study of structural damping in a beam with bolted splice connection

O. Mijatović, A. Borković*, M. Guzijan-Dilber, Z. Mišković, R. Salatić, R. Mandić, V. Golubović-Bugarski

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The objective of this research is to develop a numerical model of one widely used bolted beam splice connection that dissipates energy through structural damping. The reference experimental setup is carefully designed to obtain the highly nonlinear dynamic response due to the suddenly released load. The fact that the monolithic beam with welded connection has a linear response is utilized for the initial calibration of the numerical and experimental models. Then, the numerical model of bolted beam splice connection is verified and adopted through an iterative process. The influences of time and spatial integration, bolt load application, element type, contact formulation, bulk viscosity, and mass scaling are discussed. A special attention is given to the load application and load release functions. After the verification, the Abaqus/Explicit numerical model is validated through the comparison with experimental data, where an appropriate friction coefficient is adopted. It is demonstrated that the nonlinear structural damping occurs due to the complex micro slip behavior at the contact interface.

Original languageEnglish
Article number110661
JournalThin-Walled Structures
Volume186
DOIs
Publication statusPublished - May 2023

Keywords

  • Bolted beam splice connection
  • Frictional contact
  • Nonlinear dynamic analysis
  • Structural damping

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Experimental and numerical study of structural damping in a beam with bolted splice connection'. Together they form a unique fingerprint.

Cite this