Exploring RNS for Isogeny-based Cryptography

Research output: Working paper

Abstract

Isogeny-based cryptography suffers from a long-running time due to its requirement of a great amount of large integer arithmetic. The Residue Number System (RNS) can compensate for that drawback by making computation more efficient via parallelism. However, performing a modular reduction by a large prime which is not part of the RNS base is very expensive. In this paper, we propose a new fast and efficient modular reduction algorithm using RNS. Also, we evaluate our modular reduction method by realizing a cryptoprocessor for isogeny-based SIDH key exchange. On a Xilinx Ultrascale+ FPGA, the proposed cryptoprocessor consumes 151,009 LUTs, 143,171 FFs and 1,056 DSPs. It achieves 250 MHz clock frequency and finishes the key exchange for SIDH in 3.8 and 4.9 ms.
Original languageEnglish
Number of pages6
Publication statusPublished - 2022

Cite this