Abstract
In this work we consider triangulations of point sets in the Euclidean plane, i.e., maximal straight-line crossing-free graphs on a finite set of points. Given a triangulation of a point set, an edge flip is the operation of removing one edge and adding another one, such that the resulting graph is again a triangulation. Flips are a major way of locally transforming triangular meshes. We show that, given a point set S in the Euclidean plane and two triangulations T1 and T2 of S, it is an APX-hard problem to minimize the number of edge flips to transform T1 to T2 .
Original language | English |
---|---|
Pages (from-to) | 589-604 |
Journal | Computational Geometry |
Volume | 47 |
DOIs | |
Publication status | Published - 2014 |
Fields of Expertise
- Information, Communication & Computing
Treatment code (Nähere Zuordnung)
- Basic - Fundamental (Grundlagenforschung)