From Corn Starch to Nanostructured Magnetic Laser-Induced Graphene Nanocomposite

Sreenadh Thaikkattu Sankaran, Alexander Dallinger, Anna Chiara Bressi, Attilio Marino, Gianni Ciofani, Aleksandra Szkudlarek, Vitaliy Bilovol, Krystian Sokolowski, Birgit Kunert, Hana Kristin Hampel, Hilda Gomez Bernal, Francesco Greco*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Laser-Induced Graphene (LIG) is a 3D, conductive, porous material with a high surface area, produced by laser irradiation of synthetic polymers with high thermal stability. Recently, the focus has shifted toward sustainable bioderived and biodegradable precursors, such as lignocellulosic materials. Despite starch being an abundant and cost-effective biopolymer, direct laser scribing on starch-derived precursors has not yet been explored. This study demonstrates that corn starch bioplastic (SP) can be converted into LIG through iron-catalyzed laser-induced pyrolysis, using Fe(NO₃)₃ as an additive. The impact of iron additive concentration on LIG formation and on its properties is investigated, with only certain concentrations yielding reliable and reproducible results. The investigation of LIG's crystal structure reveals magnetic and non-magnetic iron phases: γ-Fe₂O₃, Fe₃C, and Fe(C). The LIG nanocomposite exhibits soft magnetic properties, with a coercive field of Hc ≈ 200 Oe and a saturation magnetization of Ms ≈ 67 emu g⁻¹. The SP substrate degrades almost entirely in soil within 12 days and is unaffected by the addition of Fe(NO₃)₃, allowing for material compostability in line with circular economy principles. Consequently, SP stands out as a promising “green” precursor for magnetic LIG, paving the way for sustainable applications in environmental remediation.

Original languageEnglish
JournalSmall
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • biodegradables
  • bioderived
  • core–shell nanoparticles
  • iron-catalytic
  • laser-induced graphene
  • magnetic
  • starch

ASJC Scopus subject areas

  • Biotechnology
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Engineering (miscellaneous)

Fingerprint

Dive into the research topics of 'From Corn Starch to Nanostructured Magnetic Laser-Induced Graphene Nanocomposite'. Together they form a unique fingerprint.

Cite this