Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides

Roman Lucrezi, Pedro Pires Ferreira, Samad Hajinazar, Hitoshi Mori, Hari Paudyal, Elena Roxana Margine*, Christoph Heil*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Migdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional superconductors from first principles. However, widely used implementations assume a constant density of states around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here, we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full electronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce computational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the power of our implementation by applying it to the sodalite-like clathrates YH6 and CaH6, and to the covalently-bonded H3S and D3S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi level in doped H3S and BaSiH8 within the full-bandwidth treatment compared to the constant-density-of-states approximation. Our findings highlight the importance of this advanced treatment in such complex materials.
Original languageEnglish
Article number33
JournalCommunications Physics
Volume7
Issue number1
DOIs
Publication statusPublished - 2024

ASJC Scopus subject areas

  • General Physics and Astronomy

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Dive into the research topics of 'Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides'. Together they form a unique fingerprint.

Cite this