Hydrogen and helium trapping in hcp beryllium

Nikolai Zimber*, Judith Lammer, Pavel Vladimirov, Gerald Kothleitner, Vicki J. Keast, Michael Dürrschnabel, Michael Klimenkov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Even though hydrogen-metal surface interactions play an important role in energy technologies and metal corrosion, a thorough understanding of these interactions at the nanoscale remains elusive due to obstructive detection limits in instrumentation and the volatility of pure hydrogen. In the present paper we use analytical spectroscopy in TEM to show that hydrogen adsorbs directly at the (0001) surfaces of hexagonal helium bubbles within neutron irradiated beryllium. In addition to hydrogen, we also found Al, Si and Mg at the berylliumbubble interfaces. The strong attraction of these elements to (0001) surfaces is underlined with ab-initio calculations. In situ TEM heating experiments reveal that hydrogen can desorb from the bubble walls at T ≥ 400 °C if the helium content is reduced by opening the bubbles.
Based on our results we suggest the formation of a complex hydride consisting of up to five elements with a remarkably high decomposition temperature. These results therefore promise novel insights into metal-hydrogen interaction behavior and are invaluable for the safety of future fusion power plants.
Original languageEnglish
Article number76
Number of pages7
JournalCommunications Chemistry
Volume6
Issue number1
DOIs
Publication statusPublished - 2023

ASJC Scopus subject areas

  • General Materials Science

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint

Dive into the research topics of 'Hydrogen and helium trapping in hcp beryllium'. Together they form a unique fingerprint.

Cite this