Abstract
Objectives: Solid biopharmaceutical products can circumvent lower temperature storage and transport and increase remote access with lower carbon emissions and energy consumption. Saccharides are known stabilizers in a solid protein produced via lyophilization and spray drying (SD). Thus, it is essential to understand the interactions between saccharides and proteins and the stabilization mechanism. Methods: A miniaturized single droplet drying (MD) method was developed to understand how different saccharides stabilize proteins during drying. We applied our MD to different aqueous saccharide-protein systems and transferred our findings to SD. Results: The poly- and oligosaccharides tend to destabilize the protein during drying. The oligosaccharide, Hydroxypropyl β-cyclodextrin (HPβCD) shows high aggregation at a high saccharide-to-protein molar ratio (S/P ratio) during MD, and the finding is supported by nanoDSF results. The polysaccharide, Dextran (DEX) leads to larger particles, whereas HPBCD leads to smaller particles. Furthermore, DEX is not able to stabilize the protein at higher S/P ratios either. In contrast, the disaccharide Trehalose Dihydrate (TD) does not increase or induce protein aggregation during the drying of the formulation. It can preserve the protein’s secondary structure during drying, already at low concentrations. Conclusion: During the drying of S/P formulations containing the saccharides TD and DEX, the MD approach could anticipate the in-process (in) stability of protein X at laboratory-scale SD. In contrast, for the systems with HPβCD, the results obtained by SD were contradictory to MD. This underlines that depending on the drying operation, careful consideration needs to be applied to the selection of saccharides and their ratios.
Original language | English |
---|---|
Pages (from-to) | 1283-1298 |
Number of pages | 16 |
Journal | Pharmaceutical Research |
Volume | 40 |
Issue number | 5 |
DOIs | |
Publication status | Published - 3 Apr 2023 |
Keywords
- biopharmaceutical
- miniaturized droplet drying
- saccharide
- spray drying
- stabilization
ASJC Scopus subject areas
- Biotechnology
- Molecular Medicine
- Pharmacology
- Pharmaceutical Science
- Organic Chemistry
- Pharmacology (medical)