Impact of Feature Selection and CIR Window Length on NLoS Classification for UWB Systems

Elisei Ember, Jesús Pestana Puerta, Michael Krisper, Michael Stocker, Kay Uwe Römer, Carlo Alberto Boano, Pablo Corbalán

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

Abstract

Indoor localization systems based on Ultra-WideBand (UWB) technology can typically achieve cm-level accuracy, but their performance degrades in Non-Line-of-Sight (NLoS) conditions. To cope with this problem, Machine Learning (ML) techniques have been applied to detect such NLoS conditions and adapt the localization algorithm accordingly. However, such ML techniques are typically optimized for accuracy, resulting in computationally-complex models that cannot be run on resource-constrained UWB devices. In this paper, we study and propose methods to reduce the computational complexity of NLoS classification models by applying ML-based feature selection and by reducing the window length of the channel impulse response for feature extraction. Specifically, we consider 29 features and study the effect of feature selection across five different datasets to obtain generalizable results. We show that we can extract two sets of only 3 and 8 features, which result in tiny ML models (smaller than 1 kB), and low computation times (3.6 ms and 27.7 ms on a 80 MHz ESP8266 microcontroller, respectively). This allows a reduction of the runtime by more than 90% compared to the state of the art, while still maintaining an average classification accuracy above 85% across all five datasets.
Original languageEnglish
Title of host publicationProceedings - 2023 19th International Conference on Mobility, Sensing and Networking, MSN 2023
PublisherInstitute of Electrical and Electronics Engineers
Pages72-80
Number of pages9
ISBN (Electronic)9798350358261
DOIs
Publication statusPublished - 2023

Keywords

  • Channel impulse response
  • Embedded systems
  • Feature selection
  • Machine learning
  • NLoS classification
  • Ranging

ASJC Scopus subject areas

  • Information Systems and Management
  • Control and Optimization
  • Information Systems
  • Signal Processing
  • Instrumentation
  • Computer Networks and Communications

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Dive into the research topics of 'Impact of Feature Selection and CIR Window Length on NLoS Classification for UWB Systems'. Together they form a unique fingerprint.

Cite this