Improving the Dimensional Stability and Mechanical Properties of AISI 316L + B Sinters by Si3N4 Addition

Mateusz Skalon, Ricardo Henrique Buzolin, Jan Kazior, Christof Sommitsch, Marek Hebda*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The following paper describes a new and eective method to obtain high-density sinters with simultaneously decreased distortions, produced by one press and sinter operation. This eect was achieved through the induced disappearance of the eutectic liquid phase. The study was carried out on AISI 316L stainless steel powder that was mixed with elemental boron and silicon nitride.
Boron was used as a sintering process activator. The scientific novelty of this publication consists of the use of a silicon nitride as a solid-state nitrogen carrier that was intended to change the borides’ morphology by binding boron. Based on the thermodynamic calculations, 20 blends of various compositions were tested for physical properties, porosity, microstructure, and mechanical properties.
Moreover, phase compositions for selected samples were analyzed. It was shown that the addition of silicon nitride as a nitrogen carrier decreases the boron-based eutectic phase volume and both increases the mechanical properties and decreases after-sintering distortions. An explanation of the observed phenomena was also proposed.
Original languageEnglish
Article number1798
Number of pages15
JournalMaterials
Volume12
Issue number11
DOIs
Publication statusPublished - 3 Jun 2019

Keywords

  • boron
  • 316L
  • silicon nitride
  • shape distortion
  • liquid phase sintering
  • mechanical properties

Fingerprint

Dive into the research topics of 'Improving the Dimensional Stability and Mechanical Properties of AISI 316L + B Sinters by Si3N4 Addition'. Together they form a unique fingerprint.

Cite this