In depth nano spectroscopic analysis on homogeneously switching double barrier memristive devices

J. Strobel, M. Hansen, S. Dirkmann, K.K. Neelisetty, M. Ziegler, Georg Haberfehlner, R. Popescu, Gerald Kothleitner, V.S. Chakravadhanula, C. Kübel, H. Kohlestedt, T. Mussenbrock, L. Kienle*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Memristors based on a double barrier design have been analyzed by various nanospectroscopic methods to unveil details about their microstructure and conduction mechanism. The device consists of an AlOx tunnel barrier and a NbOy/Au Schottky barrier sandwiched between the Nb bottom electrode and the Au top electrode. As it was anticipated that the local chemical composition of the tunnel barrier, i.e., oxidation state of the metals as well as concentration and distribution of oxygen ions, has a major influence on electronic conduction, these factors were carefully analyzed. A combined approach was chosen in order to reliably investigate electronic states of Nb and O by electron energy-loss spectroscopy as well as map elements whose transition edges exhibit a different energy range by energy-dispersive X-ray spectroscopy like Au and Al. The results conclusively demonstrate significant oxidation of the bottom electrode as well as a small oxygen vacancy concentration in the Al oxide tunnel barrier. Possible scenarios to explain this unexpected additional oxide layer are discussed and kinetic Monte Carlo simulations were applied in order to identify its influence on conduction mechanisms in the device. In light of the deviations between observed and originally sought layout, this study highlights the robustness of the memristive function in terms of structural deviations of the double barrier memristor device
Original languageEnglish
Article number245307
Number of pages23
JournalJournal of Applied Physics
Issue number24
Publication statusPublished - 2017

ASJC Scopus subject areas

  • Materials Science(all)

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Cite this