Abstract
Continuous manufacturing has been increasingly applied in the pharmaceutical industry. The advantages are a more flexible process, decreased costs, and opportunities for better quality control. However, performing experiments is still the way to go when developing a new process but most experiments offer only limited process insight. As part of its ConsiGma® continuous processing lines, GEA has developed a semi-continuous tablet coater with unique design and process mechanics. Simulations enable a deeper understanding of the process mechanics and allow the transition from an empirical process to a mechanistic understanding of the individual process units. We used simulations to improve the understanding of the ConsiGma® tablet coater through a digital multivariate design study. Our simulations demonstrate how the mechanical and material properties influence the tablet bed behavior. We tracked the effects of thermodynamic inputs on the coating quality via the tablet temperature and moisture. These results may be helpful in the future development of coating processes using limited experimental data.
Original language | English |
---|---|
Journal | Computational Particle Mechanics |
Early online date | 26 Jul 2024 |
DOIs | |
Publication status | E-pub ahead of print - 26 Jul 2024 |
Keywords
- CFD-DEM
- Computational fluid dynamic
- Discrete element method
- Tablet coating
- Tablets
ASJC Scopus subject areas
- Computational Mechanics
- Civil and Structural Engineering
- Numerical Analysis
- Modelling and Simulation
- Fluid Flow and Transfer Processes
- Computational Mathematics