Projects per year
Abstract
Purpose: To accelerate dynamic MR applications using infimal convolution of total generalized variation functionals (ICTGV) as spatio-temporal regularization for image reconstruction. Theory and Methods: ICTGV comprises a new image prior tailored to dynamic data that achieves regularization via optimal local balancing between spatial and temporal regularity. Here it is applied for the first time to the reconstruction of dynamic MRI data. CINE and perfusion scans were investigated to study the influence of time dependent morphology and temporal contrast changes. ICTGV regularized reconstruction from subsampled MR data is formulated as a convex optimization problem. Global solutions are obtained by employing a duality based non-smooth optimization algorithm. Results: The reconstruction error remains on a low level with acceleration factors up to 16 for both CINE and dynamic contrast-enhanced MRI data. The GPU implementation of the algorithm suites clinical demands by reducing reconstruction times of one dataset to less than 4 min. Conclusion: ICTGV based dynamic magnetic resonance imaging reconstruction allows for vast undersampling and therefore enables for very high spatial and temporal resolutions, spatial coverage and reduced scan time. With the proposed distinction of model and regularization parameters it offers a new and robust method of flexible decomposition into components with different degrees of temporal regularity.
Original language | English |
---|---|
Pages (from-to) | 142–155 |
Journal | Magnetic Resonance in Medicine |
Volume | 78 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- CMR
- Dynamic magnetic resonance imaging
- Infimal convolution
- Perfusion imaging
- Total generalized variation
- Variational models
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging
Fields of Expertise
- Human- & Biotechnology
Cooperations
- BioTechMed-Graz
Fingerprint
Dive into the research topics of 'Infimal convolution of total generalized variation functionals for dynamic MRI'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Special Research Area (SFB) MOBIS - F32 Mathematical Optimization and Applications in Biomedical Sciences
Santner, S. (Co-Investigator (CoI)), Scharfetter, H. (Co-Investigator (CoI)), Knoll, F. (Co-Investigator (CoI)), Steinbach, O. (Co-Investigator (CoI)), Of, G. (Co-Investigator (CoI)), Stollberger, R. (Principal Investigator (PI)) & Hofer, M. (Co-Investigator (CoI))
1/05/07 → 30/04/18
Project: Research project
Activities
- 1 Talk at workshop, seminar or course
-
SFB Workshop: Imaging with Modulated/Incomplete Data 2016
Schlögl, M. (Speaker)
2016Activity: Talk or presentation › Talk at workshop, seminar or course › Science to science
-
Accelerated Variational dynamic MRI reconstruction (AVIONIC)
Schlögl, M., Schwarzl, A., Holler, M., Bredies, K. & Stollberger, R., Jan 2016.Research output: Contribution to conference › (Old data) Lecture or Presentation › peer-review
-
Changing Temporal Resolution of DCE-MRI Radial VIBE Data by ICTGV Reconstruction
Schlögl, M., Holler, M., Bredies, K. & Stollberger, R., 2016.Research output: Contribution to conference › (Old data) Lecture or Presentation › peer-review
-
ICTGV Reconstruction of DCE golden angle radial VIBE data
Schlögl, M., Holler, M., Bredies, K. & Stollberger, R., 2016.Research output: Contribution to conference › Abstract › peer-review