Influence of Melt-Pool Stability in 3D Printing of NdFeB Magnets on Density and Magnetic Properties

Mateusz Skalon, Michael Görtler, Benjamin Meier, Siegfried Arneitz, Nikolaus Urban, Stefan Mitsche, Christian Huber, Joerg Franke, Christof Sommitsch

Research output: Contribution to journalArticlepeer-review

Abstract

The current work presents the results of an investigation focused on the influence of process parameters on the melt-track stability and its consequence to the sample density printed out of NdFeB powder. Commercially available powder of Nd7.5Pr0.7Fe75.4Co2.5B8.8Zr2.6Ti2.5 alloy was investigated at the angle of application in selective laser melting of permanent magnets. Using single track printing the stability of the melt pool was investigated under changing process parameters. The influence of changing laser power, scanning speed, and powder layer thickness on density, porosity structure, microstructure, phase composition, and magnetic properties were investigated. The results showed that energy density coupled with powder layer thickness plays a crucial role in melt-track stability. It was possible to manufacture magnets of both high relative density and high magnetic properties. Magnetization tests showed a significant correlation between the shape of the demagnetization curve and the layer height. While small layer heights are beneficial for sufficient magnetic properties, the remaining main parameters tend to affect the magnetic properties less. A quasi-linear correlation between the layer height and the magnetic properties remanence (Jr), coercivity (HcJ) and maximum energy product ((BH)max) was found.
Original languageEnglish
Article number139
Number of pages14
JournalMaterials
Volume13
Issue number1
DOIs
Publication statusPublished - 29 Dec 2019

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Dive into the research topics of 'Influence of Melt-Pool Stability in 3D Printing of NdFeB Magnets on Density and Magnetic Properties'. Together they form a unique fingerprint.

Cite this