Influence of Oxygen on the Kinetics of Omega and Alpha Phase Formation in Beta Ti–V

Robert Josef Enzinger, Martin Luckabauer, Norihiko L. Okamato, Tetsu Ichitsubo, Wolfgang Sprengel, Roland Würschum*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A detailed understanding of the kinetics of phase formation in β-stabilised titanium is of decisive importance for the applicability of these materials. However, the complex nature and long timescales of the various transformations, calls for specialized measurement techniques. In this work high-stability isothermal laser dilatometry is used to study the temporal volume changes associated with the various phase formation processes. Distinctly different behaviours between samples of Ti–21 at. pct V with different solute oxygen content could be detected and quantified. Temperature regimes for both diffusionless and diffusion-assisted isothermal ω-formation as well as for ω-to-α-transformation were determined. Low oxygen contents promote the diffusionless ω-formation mechanism, but retard the diffusion-assisted one as well as the ω-to-α-transformation process. The results confirm recent findings of a clear distinction between the diffusionless and diffusion-assisted isothermal ω formation modes. Modelling of the ω-phase formation applying Austin–Rickett kinetics revealed the temperature-dependent formation rates, on the basis of which the isothermal TTT-diagrams were developed which reflect the strong influence of the oxygen content.
Original languageEnglish
Pages (from-to)473-486
Number of pages14
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume54
Issue number2
Early online date30 Nov 2022
DOIs
Publication statusPublished - Feb 2023

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Dive into the research topics of 'Influence of Oxygen on the Kinetics of Omega and Alpha Phase Formation in Beta Ti–V'. Together they form a unique fingerprint.

Cite this