Lifting Symmetry Breaking Constraints with Inductive Logic Programming

Alice Tarzariol*, Martin Gebser, Konstantin Schekotihin

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review


Efficient omission of symmetric solution candidates is essential for combinatorial problem solving. Most of the existing approaches are instance-specific and focus on the automatic computation of Symmetry Breaking Constraints (SBCs) for each given problem instance. However, the application of such approaches to large-scale instances or advanced problem encodings might be problematic. Moreover, the computed SBCs are propositional and, therefore, can neither be meaningfully interpreted nor transferred to other instances. To overcome these limitations, we introduce a new model-oriented approach for Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints using the Inductive Logic Programming paradigm. Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs for a collection of combinatorial problems. The obtained results indicate that our approach significantly outperforms a state-of-the-art instance-specific method as well as the direct application of a solver.
Original languageEnglish
Title of host publicationProceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021)
EditorsZhi-Hua Zhou
ISBN (Electronic)978-0-9992411-9-6
Publication statusPublished - Aug 2021
Event30th International Joint Conference on Artificial Intelligence: IJCAI 2021 - Montreal, Virtual, Canada
Duration: 21 Aug 202126 Aug 2021


Conference30th International Joint Conference on Artificial Intelligence
Abbreviated titleIJCAI
CityMontreal, Virtual
Internet address


Dive into the research topics of 'Lifting Symmetry Breaking Constraints with Inductive Logic Programming'. Together they form a unique fingerprint.

Cite this