Long-Chain Li and Na Alkyl Carbonates as Solid Electrolyte Interphase Components: Structure, Ion Transport, and Mechanical Properties

Lukas Schafzahl, Heike Ehmann, Manfred Kriechbaum, Jürgen Sattelkow, Thomas Ganner, Harald Plank, Martin Wilkening, Stefan A. Freunberger*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The solid electrolyte interphase (SEI) in Li and Na ion batteries forms when highly reducing or oxidizing electrode materials come into contact with a liquid organic electrolyte. Its ability to form a mechanically robust, ion-conducting, and electron-insulating layer critically determines performance, cycle life, and safety. Li or Na alkyl carbonates (LiAC and NaAC, respectively) are lead SEI components in state-of-the-art carbonate based electrolytes, and our fundamental understanding of their charge transport and mechanical properties may hold the key to designing electrolytes forming an improved SEI. We synthesized a homologous series of LiACs and NaACs from methyl to octyl analogues and characterized them with respect to structure, ionic conductivity, and stiffness. The compounds assume layered structures except for the lithium methyl carbonate. Room-temperature conductivities were found to be ∼10-9 S cm-1 for lithium methyl carbonate, <10-12 S cm-1 for the other LiACs, and <10-12 S cm-1 for the NaACs with ion transport mostly attributed to grain boundaries. While LiACs show stiffnesses of ∼1 GPa, NaACs become significantly softer with increasing chain lengths. These findings will help to more precisely interpret the complex results from charge transport and mechanical characterization of real SEIs and can give a rationale for influencing the SEI's mechanical properties via the electrolyte.

Original languageEnglish
Pages (from-to)3338-3345
Number of pages8
JournalChemistry of Materials
Issue number10
Publication statusPublished - 22 May 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Chemistry

Fields of Expertise

  • Advanced Materials Science

Cite this