Projects per year
Abstract
Metal clusters have drawn continuous interest because of their high potential for the assembly of matter with special properties that may significantly differ from the corresponding bulk. Controlled combination of particular elements in one nanoparticle can increase the options for the creation of new materials for photonic, catalytic, or electronic applications. Superfluid helium droplets provide confinement and ultralow temperature,i.e.an ideal environment for the atom-by-atom aggregation of a new nanoparticle. This perspective presents a review of the current research progress on the synthesis of tailored metal and metal oxide clusters including core-shell designs, their characterization within the helium droplet beam, deposition on various solid substrates, and analysisviasurface diagnostics. Special attention is given to the thermal properties of mixed metal clusters and questions about alloy formation on the nanoscale. Experimental results are accompanied by theoretical approaches employing computational chemistry, molecular dynamics simulations and He density functional theory.
Original language | English |
---|---|
Pages (from-to) | 7553-7574 |
Number of pages | 22 |
Journal | Physical Chemistry, Chemical Physics |
Volume | 23 |
Issue number | 13 |
DOIs | |
Publication status | Published - 7 Apr 2021 |
Keywords
- Nanoparticles
- Metal/matrix composite
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physical and Theoretical Chemistry
Fields of Expertise
- Advanced Materials Science
Cooperations
- NAWI Graz
Projects
- 2 Finished
-
-
FWF - HETCAT - Heterogeneous catalysis on metallic nanoparticles
1/12/16 → 30/11/19
Project: Research project