Mixed-metal nanoparticles: phase transitions and diffusion in Au-VO clusters

Wolfgang E. Ernst*, Maximilian Lasserus, Daniel Knez, Ferdinand Hofer, Andreas W. Hauser

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Nanoparticles with diameters in the range of a few nanometers, consisting of gold and vanadium oxide, are synthesized by sequential doping of cold helium droplets in a molecular beam apparatus and deposited on solid carbon substrates. After surface deposition, the samples are removed and various measurement techniques are applied to characterize the created particles: scanning transmission electron microscopy (STEM) at atomic resolution, temperature dependent STEM and TEM up to 650 °C, energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). In previous experiments we have shown that pure V2O5 nanoparticles can be generated by sublimation from the bulk and deposited without affecting their original stoichiometry. Interestingly, our follow-up attempts to create Au@V2O5 core@shell particles do not yield the expected encapsulated structure. Instead, Janus particles of Au and V2O5 with diameters between 10 and 20 nm are identified after deposition. At the interface of the Au and the V2O5 parts we observe an epitaxial-like growth of the vanadium oxide next to the Au structure. To test the temperature stability of these Janus-type particles, the samples are heated in situ during the STEM measurements from room temperature up to 650 °C, where a reduction from V2O5 to V2O3 is followed by a restructuring of the gold atoms to form a Wulff-shaped cluster layer. The temperature dependent dynamic interplay between gold and vanadium oxide in structures of only a few nanometer size is the central topic of this contribution to the Faraday Discussion.

Original languageEnglish
Pages (from-to)160-173
Number of pages14
JournalFaraday Discussions
Volume242
DOIs
Publication statusPublished - 11 Jul 2022

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Fields of Expertise

  • Advanced Materials Science

Cooperations

  • NAWI Graz

Fingerprint

Dive into the research topics of 'Mixed-metal nanoparticles: phase transitions and diffusion in Au-VO clusters'. Together they form a unique fingerprint.

Cite this