Projects per year
Abstract
In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm 2 under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.
Original language | English |
---|---|
Article number | e202300237 |
Journal | Fuel Cells |
Volume | 24 |
Issue number | 5 |
Early online date | 14 Oct 2024 |
DOIs | |
Publication status | Published - Oct 2024 |
Keywords
- AVL FIRE M
- CFD simulation
- degradation modeling
- electrochemistry
- fuel cells
ASJC Scopus subject areas
- Energy Engineering and Power Technology
- Renewable Energy, Sustainability and the Environment
Fields of Expertise
- Mobility & Production
Fingerprint
Dive into the research topics of 'Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation'. Together they form a unique fingerprint.Projects
- 1 Active
-
AlpeDHues - Aging analysis and performance optimization of fuel cells during highly dynamic operation
Bodner, M. (Co-Investigator (CoI)), Hacker, V. (Co-Investigator (CoI)) & Edjokola, J. M. (Co-Investigator (CoI))
1/01/22 → 30/06/25
Project: Research project