Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans

Miriam De J. Velásquez-Hernández, Efwita Astria, Sarah Winkler, Weibin Liang, Helmar Wiltsche, Arpita Poddar, Ravi Shukla, Glenn Prestwich, John Paderi, Pablo Salcedo-Abraira, Heinz Amenitsch, Patricia Horcajada, Christian J. Doonan, Paolo Falcaro*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Glycosaminoglycans (GAGs) are biomacromolecules necessary for the regulation of different biological functions. In medicine, GAGs are important commercial therapeutics widely used for the treatment of thrombosis, inflammation, osteoarthritis and wound healing. However, protocols for the encapsulation of GAGs in MOFs carriers are not yet available. Here, we successfully encapsulated GAG-based clinical drugs (heparin, hyaluronic acid, chondroitin sulfate, dermatan sulfate) and two new biotherapeutics in preclinical stage (GM-1111 and HepSYL proteoglycan) in three different pH-responsive metal-azolate frameworks (ZIF-8, ZIF-90, and MAF-7). The resultant GAG@MOF biocomposites present significant differences in terms of crystallinity, particle size, and spatial distribution of the cargo, which influences the drug-release kinetics upon applying an acidic stimulus. For a selected system, heparin@MOF, the released therapeutic retained its antithrombotic activity while the MOF shell effectively protects the drug from heparin lyase. By using different MOF shells, the present approach enables the preparation of GAG-based biocomposites with tunable properties such as encapsulation efficiency, protection and release.

Original languageEnglish
Pages (from-to)10835-10843
Number of pages9
JournalChemical Science
Volume11
Issue number39
DOIs
Publication statusPublished - 21 Oct 2020

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint

Dive into the research topics of 'Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans'. Together they form a unique fingerprint.

Cite this