On finite rank perturbations of selfadjoint operators in Krein spaces and eigenvalues in spectral gaps

Jussi Behrndt*, Roland Moews, Carsten Trunk

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

It is shown that the finiteness of eigenvalues in a spectral gap of a definitizable or locally definitizable selfadjoint operator in a Krein space is preserved under finite rank perturbations. This results is applied to a class of singular Sturm–Liouville operators with an indefinite weight function.
Original languageGerman
Pages (from-to)925-936
JournalComplex Analysis and Operator Theory
Volume8
DOIs
Publication statusPublished - 2014

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Cite this