TY - JOUR
T1 - On Modeling the Wilson Terminal in the Boundary and Finite Element Method
AU - Fischer, Gerald
AU - Tilg, Bernhard
AU - Modre-Osprian, Robert
AU - Hanser, Friedrich
AU - Messnarz, Bernd
AU - Wach, Paul
PY - 2002
Y1 - 2002
N2 - In clinical electrocardiography, the zero-potential is commonly defined by the Wilson central terminal. In the electrocardiographic forward and inverse problem, the zero-potential is often defined in a different way, e.g., by the sum of all node potentials yielding zero. This study presents relatively simple to implement techniques, which enable the incorporation of the Wilson Terminal in the boundary element method (BEM) and finite element method (FEM). For the BEM, good results are obtained when properly adopting matrix deflation for modeling the Wilson terminal. Applying other zero-potential-definitions, the obtained solutions contained a remarkable offset with respect to the reference defined by the Wilson terminal. In the inverse problem (nonlinear dipole fit), errors introduced by an erroneous zero-potential-definition can lead to displacements of more than 5 mm in the computed dipole location. For the FEM, a method similar to matrix deflation is proposed in order to properly consider the Wilson central terminal. The matrix obtained from this manipulation is symmetric, sparse and positive definite enabling the application of standard FEM-solvers.
AB - In clinical electrocardiography, the zero-potential is commonly defined by the Wilson central terminal. In the electrocardiographic forward and inverse problem, the zero-potential is often defined in a different way, e.g., by the sum of all node potentials yielding zero. This study presents relatively simple to implement techniques, which enable the incorporation of the Wilson Terminal in the boundary element method (BEM) and finite element method (FEM). For the BEM, good results are obtained when properly adopting matrix deflation for modeling the Wilson terminal. Applying other zero-potential-definitions, the obtained solutions contained a remarkable offset with respect to the reference defined by the Wilson terminal. In the inverse problem (nonlinear dipole fit), errors introduced by an erroneous zero-potential-definition can lead to displacements of more than 5 mm in the computed dipole location. For the FEM, a method similar to matrix deflation is proposed in order to properly consider the Wilson central terminal. The matrix obtained from this manipulation is symmetric, sparse and positive definite enabling the application of standard FEM-solvers.
U2 - 10.1109/10.983455
DO - 10.1109/10.983455
M3 - Article
SN - 0018-9294
VL - 49
SP - 217
EP - 224
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 3
ER -