Quantitative Magnetic Resonance Imaging by Nonlinear Inversion of the Bloch Equations

Nick Scholand*, Xiaoqing Wang, Volkert Roeloffs, Sebastian Rosenzweig, Martin Uecker

*Corresponding author for this work

Research output: Working paperPreprint


Purpose: Development of a generic model-based reconstruction framework for multi-parametric quantitative MRI that can be used with data from different pulse sequences. Methods: Generic nonlinear model-based reconstruction for quantitative MRI estimates parametric maps directly from the acquired k-space by numerical optimization. This requires numerically accurate and efficient methods to solve the Bloch equations and their partial derivatives. In this work, we combine direct sensitivity analysis and pre-computed state-transition matrices into a generic framework for calibrationless model-based reconstruction that can be applied to different pulse sequences. As a proof-of-concept, the method is implemented and validated for quantitative $T_1$ and $T_2$ mapping with single-shot inversion-recovery (IR) FLASH and IR bSSFP sequences in simulations, phantoms, and the human brain. Results: The direct sensitivity analysis enables a highly accurate and numerically stable calculation of the derivatives. The state-transition matrices efficiently exploit repeating patterns in pulse sequences, speeding up the calculation by a factor of 10 for the examples considered in this work, while preserving the accuracy of native ODE solvers. The generic model-based method reproduces quantitative results of previous model-based reconstructions based on the known analytical solutions for radial IR FLASH. For IR bSFFP it produces accurate $T_1$ and $T_2$ maps for the NIST phantom in numerical simulations and experiments. Feasibility is also shown for human brain, although results are affected by magnetization transfer effects. Conclusion: By developing efficient tools for numerical optimizations using the Bloch equations as forward model, this work enables generic model-based reconstruction for quantitative MRI.
Original languageEnglish
Publication statusPublished - 16 Sep 2022


  • physics.med-ph


Dive into the research topics of 'Quantitative Magnetic Resonance Imaging by Nonlinear Inversion of the Bloch Equations'. Together they form a unique fingerprint.

Cite this