Quo vadis? – Artificial Intelligence in der Hochspannungstechnik

Research output: Contribution to conferencePaperpeer-review

Abstract

Für eine sichere Energieversorgung ist die Anlagenverfügbarkeit und Ausfallsicherheit von besonderer Bedeutung. Monitoringsysteme können hier einen wesentlichen Beitrag leisten, besonders im Rahmen einer zustands- und zuverlässigkeitsorientierten Instandhaltung. Für diese Strategien ist die Information über den aktuellen Zustand eines elektrischen Betriebsmittels essentiell. Durch die digitale Messtechnik sowie zunehmende Rechenleistungen können Monitoringsysteme mit Hilfe von Artificial Intelligence und Machine Learning leistungsfähiger werden. Der Zustand kann dadurch automatisch bewertet werden, wodurch ein wesentlicher Beitrag zur Erhöhung der Versorgungssicherheit geleistet wird. Hierzu lassen sich viele Beispiele in der Hochspannungstechnik finden. Die Messung von Teilentladungen (TE) stellt eine der wichtigsten Diagnosemethoden dar, weshalb es Algorithmen benötigt, um die Messdaten automatisch auszuwerten und zu klassifizieren. Artificial Intelligence hat sich im Bereich der Wechselspannungsdiagnose bereits teilweise etabliert und es stehen automatische Identifikationsmethoden zur Verfügung. Für Gleichspannungssysteme ist dies noch nicht der Fall, da hier die TE-Identifikationsmethoden Gegenstand der aktuellen Forschung sind.

Conference

Conference16. Symposium Energieinnovation - ENERGY FOR FUTURE - Wege zur Klimaneutralität
Abbreviated titleEnInnov 2020
Country/TerritoryAustria
CityGraz
Period12/02/2014/02/20
Internet address

Cite this