Respiration-entrained brain oscillations in healthy fMRI participants with high anxiety

Gert Pfurtscheller, Maciej Kaminski*, Katarzyna J.Blinowska, Beate Rassler, Gerhard Schwarz, Wolfgang Klimesch

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Brain-body interactions can be studied by using directed coupling measurements of fMRI oscillations in the low (0.1–0.2 Hz) and high frequency bands (HF; 0.2–0.4 Hz). Recently, a preponderance of oscillations in the information flow between the brainstem and the prefrontal cortex at around 0.15/0.16 Hz was shown. The goal of this study was to investigate the information flow between BOLD-, respiratory-, and heart beat-to-beat interval (RRI) signals in the HF band in healthy subjects with high anxiety during fMRI examinations. A multivariate autoregressive model was concurrently applied to the BOLD signals from the middle frontal gyrus (MFG), precentral gyrus and the brainstem, as well as to respiratory and RRI signals. Causal coupling between all signals was determined using the Directed Transfer Function (DTF). We found a salience of fast respiratory waves with a period of 3.1 s (corresponding to ~ 0.32 Hz) and a highly significant (p < 0.001) top-down information-flow from BOLD oscillations in the MFG to the brainstem. Additionally, there was a significant (p < 0.01) information flow from RRI to respiratory oscillations. We speculate that brain oscillations around 0.32 Hz, triggered by nasal breathing, are projected downwards to the brainstem. Particularly interesting is the driving force of cardiac to respiratory waves with a ratio of 1:1 or 1:2. These results support the binary hierarchy model with preferred respiratory frequencies at 0.32 Hz and 0.16 Hz.

Original languageEnglish
Article number2380
JournalScientific Reports
Volume13
Issue number1
DOIs
Publication statusPublished - 2023

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Respiration-entrained brain oscillations in healthy fMRI participants with high anxiety'. Together they form a unique fingerprint.

Cite this