Abstract
Light driven water oxidation is a key step in artificial photosynthesis, aimed at splitting water into hydrogen and oxygen with sunlight. In such process, the interactions between a photosensitizer (PS) and a water oxidation catalyst (WOC) play a crucial role in the rates of photoinduced electron transfers, determining the overall quantum efficiency of the system. In this work, by means of Small Angle X-ray Scattering (SAXS) we investigate the nature of the aggregates between ruthenium polypyridine photosensitizers (Rubpy and Ru4dend) and a tetraruthenium polyoxometalate (Ru4POM) water oxidation catalyst. Aggregate scattering is confirmed by the strong intensity-increase in the low-q regime, whereas the power law-fit of this region show slopes between −3 and −4, suggesting globular and porous aggregates. Intermolecular PS/WOC distances lower than 3 nm support the observed fast photoinduced electron transfers (<120 ps), however the proximity of the two components in the hybrids is also responsible for fast charge recombination. Approaches for inhibiting such undesired process are discussed.
Original language | English |
---|---|
Pages (from-to) | 171-175 |
Journal | Inorganica Chimica Acta |
DOIs | |
Publication status | Published - 1 Jan 2017 |
ASJC Scopus subject areas
- Materials Science(all)
- Physical and Theoretical Chemistry
Fields of Expertise
- Advanced Materials Science