TY - JOUR
T1 - Single-molecule study of oxidative enzymatic deconstruction of cellulose
AU - Eibinger, Manuel
AU - Sattelkow, Jürgen
AU - Ganner, Thomas
AU - Plank, Harald
AU - Nidetzky, Bernd
N1 - Funding Information:
R. Ludwig (University of Natural Resources and Life Sciences, Vienna) kindly provided NcLPMO9C and NcLPMO9F. H. Fitzek (Graz University of Technology) performed Raman spectroscopy analysis. This work was supported by the Austrian Science Funds (FWF Project P-24156-B21 to B.N.).
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time (~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly (≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.
AB - LPMO (lytic polysaccharide monooxygenase) represents a unique paradigm of cellulosic biomass degradation by an oxidative mechanism. Understanding the role of LPMO in deconstructing crystalline cellulose is fundamental to the enzyme's biological function and will help to specify the use of LPMO in biorefinery applications. Here we show with real-time atomic force microscopy that C1 and C4 oxidizing types of LPMO from Neurospora crassa (NcLPMO9F, NcLPMO9C) bind to nanocrystalline cellulose with high preference for the very same substrate surfaces that are also used by a processive cellulase (Trichoderma reesei CBH I) to move along during hydrolytic cellulose degradation. The bound LPMOs, however, are immobile during their adsorbed residence time (~ 1.0 min for NcLPMO9F) on cellulose. Treatment with LPMO resulted in fibrillation of crystalline cellulose and strongly (≥ 2-fold) enhanced the cellulase adsorption. It also increased enzyme turnover on the cellulose surface, thus boosting the hydrolytic conversion.
UR - http://www.scopus.com/inward/record.url?scp=85031297579&partnerID=8YFLogxK
U2 - 10.1038/s41467-017-01028-y
DO - 10.1038/s41467-017-01028-y
M3 - Article
C2 - 29026070
AN - SCOPUS:85031297579
SN - 2041-1723
VL - 8
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 894
ER -