Surface electronic corrugation of a one-dimensional topological metal: Bi(114)

Stephan J. Schmutzler, Adrian Ruckhofer*, Wolfgang E. Ernst, Anton Tamtögl*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The surface of Bi(114) is a striking example where the reduced dimensionality gives rise to structural rearrangement and new states at the surface. Here, we present a study of the surface structure and electronic corrugation of this quasi one-dimensional topological metal based on helium atom scattering (HAS) measurements. In contrast to low-index metal surfaces, upon scattering from the stepped (114) truncation of Bi, a large proportion of the incident beam is scattered into higher order diffraction channels which in combination with the large surface unit cell makes an analysis challenging. The surface electronic corrugation of Bi(114) is determined, using measurements upon scattering normal to the steps, together with quantum mechanical scattering calculations. Therefore, minimisation routines that vary the shape of the corrugation are employed, in order to minimise the deviation between the calculations and experimental scans. Furthermore, we illustrate that quantum mechanical scattering calculations can be used to determine the orientation of the in- and outgoing beam with respect to the stepped surface structure.
Original languageEnglish
Pages (from-to)9146-9155
Number of pages10
JournalPhysical Chemistry, Chemical Physics
Volume24
Issue number16
DOIs
Publication statusPublished - 9 Feb 2022

ASJC Scopus subject areas

  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry

Fields of Expertise

  • Advanced Materials Science

Cooperations

  • NAWI Graz

Fingerprint

Dive into the research topics of 'Surface electronic corrugation of a one-dimensional topological metal: Bi(114)'. Together they form a unique fingerprint.

Cite this