Systematic Stability Analysis, Evaluatation and Testing Process and Platform for Grid-connected Power Electronic Equipment

Ziqian Zhang*, Robert Schürhuber, Lothar Fickert, Katrin Friedl, Guochu Chen, Yongming Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The proportion of grid-connected power electronic equipment is already large enough to influence the dynamic characteristics of the modern power system. Ensuring the stability of grid-connected power electronic equipment in all relevant situations is one of the foundations for reliable power system operation. In contrast to conventional rotating machines, the stability of power electronic devices mostly depends on the applied control strategy, and a large diversity of different complex control strategies are in practical use. Also, the investigation of stability of such systems needs to take into account the non-linear behaviour of the power electronic equipment. These are the main reasons why the system behavior of grid-connected power electronic equipment cannot be reproduced satisfactorily when aplying a single method of stability analysis, evaluation and testing method. During the last years, faults which led to tripping of converters due to stability problems occurred frequently even though standardized fault compliance tests were performed on these converters. In this paper these stability issues are analyzed. Also, a three-dimensional stability analysis method is suggested in order to comprehensively cover system behavior. The three dimensions are the time/scale dimension, the equipment number dimension and the local or global range of the stability analysis dimension. Based on this three-dimensional framework, this paper proposes a stability evaluation as well as a test process applying a hardware-in-the-loop test concept. Through the verification and testing of the stability of the actual grid-connected power electronic equipment, the method proposed in this paper is verified for up-to-date equipment.

Translated title of the contributionSystematische Stabilitätsanalyse, Bewertungs- und Testprozess und Plattform für netzgekoppelte leistungselektronische Geräte
Original languageEnglish
Pages (from-to)20-30
Number of pages11
JournalElektrotechnik und Informationstechnik
Issue number1
Early online date16 Nov 2020
Publication statusPublished - Feb 2021


  • converter stability
  • transient stability
  • hardware-in-the-loop test
  • Lyapunov method
  • domain of attraction

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Systematic Stability Analysis, Evaluatation and Testing Process and Platform for Grid-connected Power Electronic Equipment'. Together they form a unique fingerprint.

Cite this