The 2021 quantum materials roadmap

Feliciano Giustino, Jin Hong Lee, Felix Trier, Manuel Bibes, Stephen M. Winter, Roser Valentí, Young Woo Son, Louis Taillefer, Christoph Heil, Adriana I. Figueroa, Bernard Plaçais, Quan Sheng Wu, Oleg V. Yazyev, Erik P.A.M. Bakkers, Jesper Nygård, Pol Forn-Díaz, Silvano de Franceschi, J. W. McIver, L. E.F. Foa Torres, Tony LowAnshuman Kumar, Regina Galceran, Sergio O. Valenzuela, Marius V. Costache, Aurélien Manchon, Eun Ah Kim, Gabriel R. Schleder, Adalberto Fazzio, Stephan Roche

Research output: Contribution to journalReview articlepeer-review

Abstract

In recent years, the notion of ‘Quantum Materials’ has emerged as a powerful unifying concept across diverse fields of science and engineering, from condensed-matter and coldatom physics to materials science and quantum computing. Beyond traditional quantum materials such as unconventional superconductors, heavy fermions, and multiferroics, the field has significantly expanded to encompass topological quantum matter, two-dimensional materials and their van der Waals heterostructures, Moiré materials, Floquet time crystals, as well as materials and devices for quantum computation with Majorana fermions. In this Roadmap collection we aim to capture a snapshot of the most recent developments in the field, and to identify outstanding challenges and emerging opportunities. The format of the Roadmap, whereby experts in each discipline share their viewpoint and articulate their vision for quantum materials, reflects the dynamic and multifaceted nature of this research area, and is meant to encourage exchanges and discussions across traditional disciplinary boundaries. It is our hope that this collective vision will contribute to sparking new fascinating questions and activities at the intersection of materials science, condensed matter physics, device engineering, and quantum information, and to shaping a clearer landscape of quantum materials science as a new frontier of interdisciplinary scientific inquiry. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research on quantum materials with a minimal number of references focusing on the latest developments.

Original languageEnglish
Article number042006
JournalJPhys Materials
Volume3
Issue number4
DOIs
Publication statusPublished - Oct 2020

Keywords

  • 2D materials
  • Condensed matter
  • Device engineering
  • Materials science
  • Quantum materials
  • Quantum technologies
  • Superconductors
  • Topological materials

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'The 2021 quantum materials roadmap'. Together they form a unique fingerprint.

Cite this