Transition probability estimates for subordinate random walks

Wojciech Cygan, Stjepan Sebek

Research output: Working paperPreprint


Let Sn be the simple random walk on the integer lattice Zd. For a Bernstein function Φ we consider a random walk SΦn which is subordinated to Sn. Under a certain assumption on the behaviour of Φ at zero we establish global estimates for the transition probabilities of the random walk Sn. The main tools that we apply are the parabolic Harnack inequality and appropriate bounds for the transition kernel of the corresponding continuous time random walk.
Original languageEnglish
Number of pages34
Publication statusPublished - 25 Feb 2020

Publication series e-Print archive
PublisherCornell University Library


  • Random walk
  • Discrete subordination
  • Bernstein function
  • Parabolic Harnack inequality
  • Transition probability estiamte
  • Scaling condition

ASJC Scopus subject areas

  • Mathematics(all)


Dive into the research topics of 'Transition probability estimates for subordinate random walks'. Together they form a unique fingerprint.

Cite this