Two Novel Iboga-Type and an Oxindole Glucuronide Alkaloid from Tabernaemontana peduncularis Disclose Related Biosynthetic Pathways to Tabernaemontana divaricata

Florian Traxler, Haoqi Zhang, Wiratchanee Mahavorasirikul, Katharina Krivanek, Xiang Hai Cai, Wichai Aiyakool, Martin Pfeiffer, Lothar Brecker*, Johann Schinnerl*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Phytochemical investigation of the two Tabernaemontana species (Apocynaceae) T. peduncularis Wall. and T. divaricata (L.) R.Br. ex Roem. & Schult. indicated closely related biosynthetic pathways leading to lipophilic and hydrophilic alkaloids. In total, 18 specialized metabolites comprising indole-derived alkaloid aglycones, three oxindole-derived alkaloid glycosides, and two iridoid glucosides could be identified in the studied species. Among the alkaloids, the two Iboga-type alkaloids 3,7-coronaridine isoindolenine, coronaridine 3,4-iminium and a javaniside derivative bearing a glucuronic acid, named javanuronic acid, could be described by spectroscopic and spectrometric methods for the first time. A docking experiment using alpha-fold was performed to generate a protein model of the enzyme 7-deoxyloganetic acid glucosyl transferase. Performed bioassays exhibited a growth reduction of neonate Spodoptera littoralis larvae and reduced cell viability of HepG2 cells of the extracts containing Iboga alkaloids, whilst the javaniside derivatives containing hydrophilic fraction did not show any effects. These findings indicate a high flexibility in the formation of bioactive indole alkaloid aglycones by Tabernaemontana species and also evidence similar accumulation trends in both species as well as indicate that biosynthetic routes leading to oxindole alkaloids like javanisides are more widespread than reported. Furthermore, the incorporation of the three novel compounds into potential biosynthetic pathways is discussed.

Original languageEnglish
Article number6664
JournalMolecules
Volume28
Issue number18
DOIs
Publication statusPublished - Sept 2023

Keywords

  • Apocynaceae
  • glucuronide alkaloid
  • indole alkaloid
  • javaniside
  • Tabernaemontana divaricata
  • Tabernaemontana peduncularis

ASJC Scopus subject areas

  • Analytical Chemistry
  • Chemistry (miscellaneous)
  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Cite this