

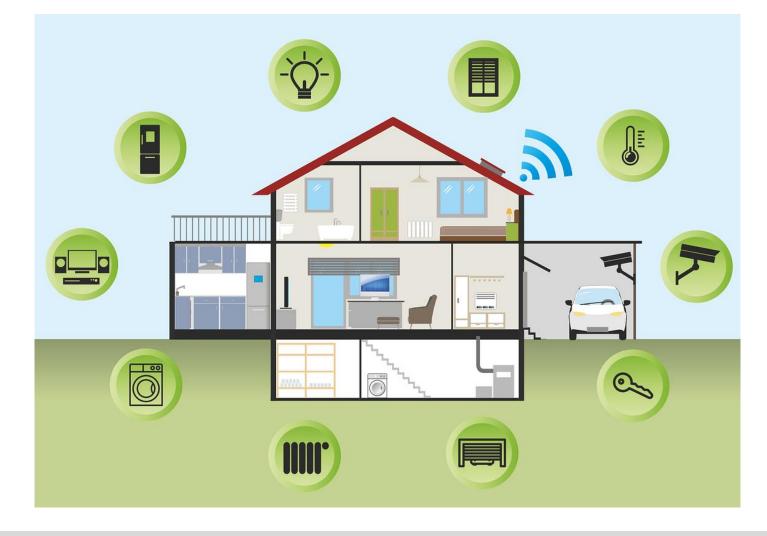
Hardware–Secured Configuration and Two–Layer Attestation Architecture for Smart Sensors

<u>Thomas Ulz</u>, Thomas Pieber, Christian Steger¹ Sarah Haas, Rainer Matischek, Holger Bock²

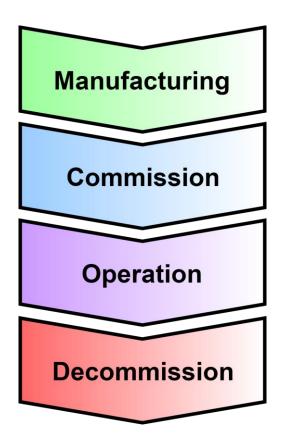
¹Graz University of Technology ²Infineon Austria AG

T Outline

- 1. Motivation, State-of-the-art
- 2. Secured Configuration
 - **NFC-Interface** 1
 - 2. Protocol
 - 3. System Model
- 3. Hardware Architecture
 - 1. Two-Layer Attestation
- 4. Evaluation
- 5. Conclusion and Future Work


Motivation – Industry 4.0 / Smart Homes

ITI


4 Motivation – Smart Homes

Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors Euromicro DSD 2017

ITI Motivation – Smart Sensor Configuration

- Initial manufacturer keys
- Initial configuration
- Device owner key update
- Specific configuration updates
- Recurrent configuration updates
- Reconfiguration for changing tasks
- **Reconfiguration for resale**
- Deletion of confidential data

Motivation – Requirements I/II

- Secured transfer of configuration data
 - Confidential information
- Tamper resistant

- Stored data must be protected
- Easy and intuitive to use
 - Applied in industrial and smart home settings
- Attestation mechanism to verify correct config

Motivation – Requirements II/II

Energy efficient

- Smart sensors might be operated on battery power
- Configuration update without power source
 - E.g. during manufacturing of sensor

- Various configuration interfaces
 - Wired
 - Wireless (WiFi, Bluetooth, ...)
 - Buttons, Displays, DIP Switches

- Often limited security considerations
- No arbitrary payloads but firmware, pairing info, ...
- No attestation of applied configuration

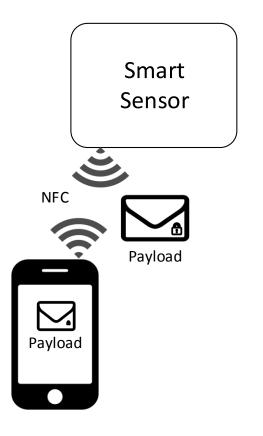
Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors Euromicro DSD 2017

- Define a secured configuration interface
 - Easy and intuitive to use
 - Protocol and hardware
- Suitable for existing devices and new devices
- Show how our proposed architecture can be used for configuration attestation

¹⁰ Outline

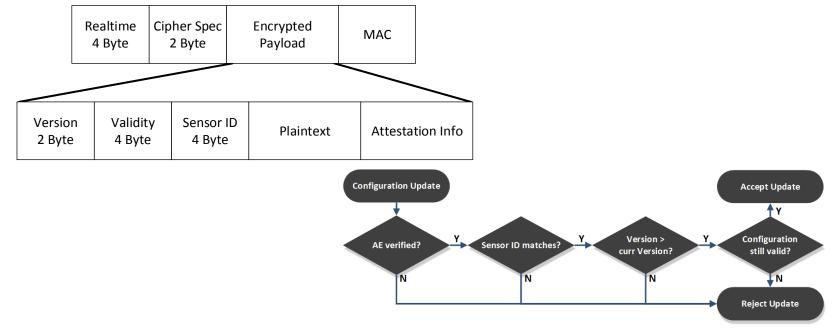
1. Motivation, State-of-the-art

2. Secured Configuration


- 1. NFC-Interface
- 2. Protocol
- 3. System Model
- 3. Hardware Architecture
 - 1. Two-Layer Attestation
- 4. Evaluation
- 5. Conclusion and Future Work

¹¹ Secured Configuration – NFC Interface

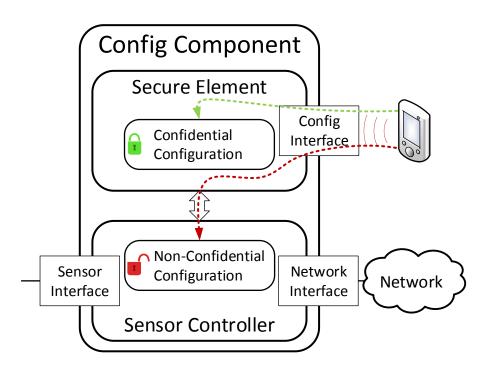
Use NFC as configuration interface


- Intuitive to use
- Little interference compared to other technologies such as WiFi
 - NFC operates at 13.56 MHz
- "Security by proximity"
 - Roughly 10cm, Eavesdropping 10m!
 - Configuration interface not accessible for remote attackers
 - But no security by protocol!

¹² Secured Configuration – Protocol

- NDEF-based protocol for configuration transport
- Data protected by authenticated encryption
- "Ticket" information to mitigate replay attacks

Secured Configuration – System Model 13 Smart Sensor 1 Back-End NFC m Mobile Payload Configuration **Devices** Payload n Smart Sensors


¹⁴ Outline

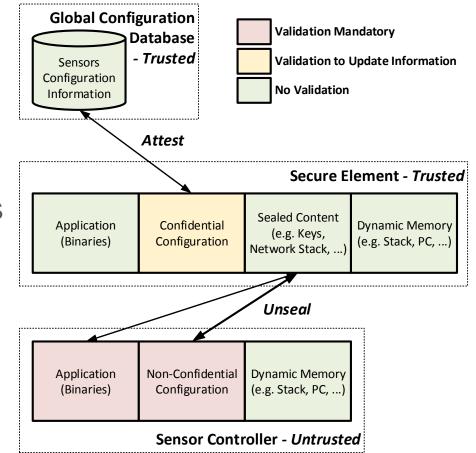
- 1. Motivation, State-of-the-art
- 2. Secured Configuration
 - 1. NFC-Interface
 - 2. Protocol
 - 3. System Model
- 3. Hardware Architecture
 - 1. Two-Layer Attestation
- 4. Evaluation
- 5. Conclusion and Future Work

Component split into two worlds

- Secured world
- Normal world
- Security by isolation
- Secure Element
 - Storage
 - Cryptographic Operations

¹⁶ Configuration Attestation / Validation

Based on hardware architecture


- Local Root of Trust (LRoT) in any Smart Sensor
- Based on system architecture
 - Global Root of Trust (GRoT) given by global configuration storage present in system model

Global configuration storage GROT	Network
Confidential configuration data SE / LROT	r
Validated by	Sensor
Non-confidential configuration data	
CPU	

¹⁷ Configuration Attestation / Validation

- Non-Confidential data
 - Binary attestation
 - Property based attestation
 - "Seal" network access
- Confidential data
 - Stored in trusted SE
 - Only validation by GRoT to verify update

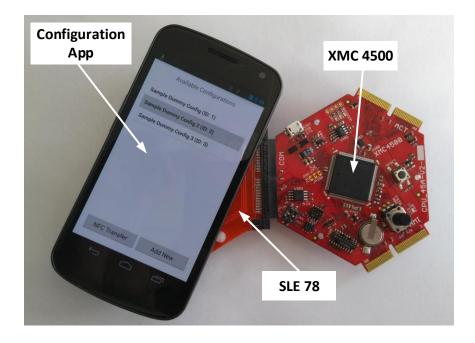
¹⁸ Design Decisions

- SE over TPM
 - Provides same functionality as TPM
 - Low power consumption (used in smartcards)
 - In addition
 - NFC interface
 - Can be powered through NFC interface
 - Trusted execution environment
- By "sealing" network access
 - Malicious smart sensor is isolated
 - If data received: sensor and data is trustworthy

¹⁹ Outline

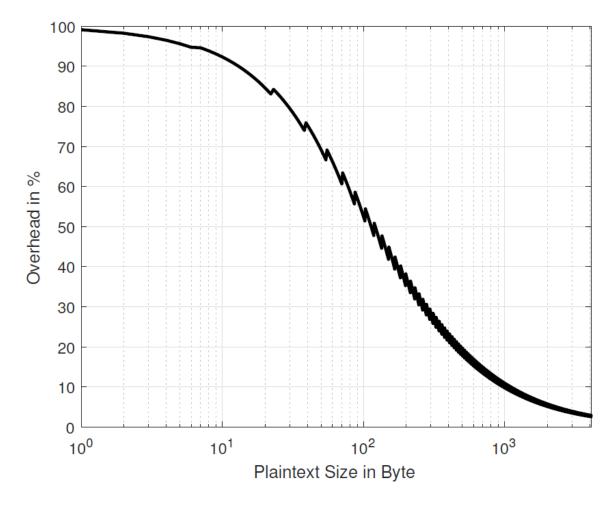
- 1. Motivation, State-of-the-art
- 2. Secured Configuration
 - 1. NFC-Interface
 - 2. Protocol
 - 3. System Model
- 3. Hardware Architecture
 - 1. Two-Layer Attestation
- 4. Evaluation
- 5. Conclusion and Future Work

²⁰ Evaluation


- Feasibility: Prototypical implementation
- Performance: Timing measurements
- Security improvements: Threat analysis

Evaluation – Prototype

Infineon components


- XMC4500
- SLE78
- Android smartphone
- Performance
 - 5-10 parameters
 - 200ms

Similar to TLS over WiFi on Raspberry PI3

²² Evaluation – Protocol Overhead by Security

Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors Euromicro DSD 2017

²³ Evaluation – Threat Analysis

- Not exhaustive, most important threats identified
- Overall 8 threats identified that are mitigated by countermeasures implemented in our approach
- Mitigated: malicious configuration updates, replay attacks, DoS attacks (using configuration interface), and physical attacks

²⁴ Evaluation – Threat Analysis

- Malicious updates, replay attacks
 - Mitigated by protocol
- Malicious configuration or software
 - Mitigated by attestation
- Remote attacks
 - Mitigated by only allowing updates via NFC
- Adversary with physical access to smart sensor
 - Mitigated by using tamper resistant SE

Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors Euromicro DSD 2017

²⁵ Outline

- 1. Motivation, State-of-the-art
- 2. Secured Configuration
 - 1. NFC-Interface
 - 2. Protocol
 - 3. System Model
- 3. Hardware Architecture
 - 1. Two-Layer Attestation
- 4. Evaluation
- 5. Conclusion and Future Work

²⁶ Conclusion and Future Work

- Secured and easy-to-use configuration approach
 - Suitable for confidential and non-confidential data
- Can be retrofit into existing sensors and new devices
- Configuration solution is "attestation aware"
 - Attestation is considered in data transfer protocol
- 8 potential threats mitigated by our approach
- Future work: further investigate methods for granting or denying network access to smart sensors

Acknowledgements IoSense

This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692480. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Germany, Netherlands, Spain, Austria, Belgium, Slovakia.

IoSense is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under the program "ICT of the Future" between May 2016 and April 2019. More information: <u>https://iktderzukunft.at/en/</u>

Austrian Ministry for Transport, Innovation and Technology

Thank you!

Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors Euromicro DSD 2017