
L. Fritsch, H. Roßnagel, D. Hühnlein (Hrsg.): Open Identity Summit 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Towards Privacy-Preserving and User-Centric Identity
Management as a Service

Pritam Dash1, Christof Rabensteiner 2, Felix Hörandner 3, Simon Roth 4

Abstract: Identification, authentication and the exchange of users’ identity information are key factors
in protecting access to online services. Especially cost-effectiveness is a considerable incentive to
move identity management models into the public cloud. As cloud environments are not fully trusted,
the users’ sensitive attributes must not be stored or transmitted in plain, while it still has to be possible
to share them. One approach is to employ proxy re-encryption, which enables the identity provider to
transform a user’s encrypted attributes into ciphertext for an authorized service provider. However,
for adoption, the user’s perspective must not be neglected. In this paper, we propose a user-friendly
and user-centric identity management solution that employs cryptographic mechanisms to protect the
users’ privacy and keep them in control of the data sharing process. We integrate proxy re-encryption
into the widely-adopted OpenID Connect protocol to achieve end-to-end confidentiality. To make this
concept user-friendly, we introduce a mobile app that handles the involved cryptographic operations
which rely on keys securely stored in a trusted execution environment.

Keywords: Identity management, OpenID Connect, Cloud Computing, Mobile Application, Proxy
Re-Encryption, Trusted Execution Environment.

1 Introduction

In identity management (IdM) solutions, service providers (SPs) outsource identification
and authentication processes to an identity provider (IdP). Initially, identity management was
mainly limited to inter-organizational approaches within a single domain. Over time, more
sophisticated federated approaches emerged, which enabled identification and authentication
across organizational domains or even national borders [LZ10] through standardized
protocols such as OpenID Connect [Sa14], SAML [Ca09], or WS-Federation [GN09]. The
benefits of cloud computing, such as reduced costs and scalability, also represent convincing
incentives for identity management systems. By moving the identity management processes
into the cloud, Identity (and Access) Management can be offered "as a Service" (IDaaS) to
applications operated both in closed domains and in the cloud.
1 Stiftung Secure Information and Communication Technologies (SIC), Inffeldgasse 16a, 8010 Graz, Austria,

pritam.dash@iaik.tugraz.at
2 Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology

(TUG), Inffeldgasse 16a - Second F, 8010 Graz, Austria, christof.rabensteiner@iaik.tugraz.at
3 Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology

(TUG), Inffeldgasse 16a - Second F, 8010 Graz, Austria, felix.hoerandner@iaik.tugraz.at
4 Stiftung Secure Information and Communication Technologies (SIC), Inffeldgasse 16a, 8010 Graz, Austria,

simon.roth@iaik.tugraz.at



2 Pritam Dash, Christof Rabensteiner, Felix Hörandner, and Simon Roth

While traditional identity providers are usually deployed in-house and considered to be fully
trusted with respect to privacy, this assumption does not hold anymore in the cloud [Hö16].
Since cloud identity providers are able to inspect the deployed applications and their data,
they are considered to be only semi-trusted and acting honest-but-curious [CS10]. Therefore,
privacy and data confidentiality represent significant challenges, especially when dealing
with sensitive information. To overcome the privacy issues of existing IdM systems in public
clouds, one solution is to use proxy re-encryption with established identity protocols. Proxy
re-encryption extends asymmetric encryption by enabling a semi-trusted proxy to transform
encrypted data of one entity into ciphertext for another without learning the underlying
message. Thereby secure and privacy-preserving sharing of information between users and
service providers in cloud-based applications is possible.

In related work, several identity management concepts based on proxy re-encryption have
been proposed. Nunez et al. enhanced OpenID [NAL12] and SAML [NA14] with proxy
re-encryption such that data-curious identity providers do not learn the user’s identity
attributes. However, [NA14] moves control over the data sharing away from the user
to a representative entity. One of the major setbacks here is that the private key of the
representative entity is used to generate re-encryption keys for all the users it represents.
Zwattendorfer et al. [Zw14] proposed a federated cloud identity broker model employing
proxy re-encryption to achieve enhanced privacy. In [ZS15], they propose three approaches
on how to move aspects of the eID infrastructure into the public cloud and in [ZS16] further
extend the proposed design in the context of the Austrian eID solution. Their approach
leverages proxy re-encryption and redactable signatures [Jo02] to protect users against
privacy invasions. While the above mentioned papers and their core idea of using proxy
re-encryption in identity management build the basis of our approach, they do not address the
usability, security and trust challenges associated with certain processes such as: allowing
the user to conveniently encrypt data, generating re-encryption keys for authorized service
providers, and exporting such data to the cloud.

In this paper, we propose a more complete identity management solution that aims to be
privacy-preserving, user-centric and user-friendly. Our contribution consists of two parts:

We provide guidelines on how to integrate proxy re-encryption into the widely adopted
OpenID Connect ecosystem to ensure end-to-end data confidentiality. Users stay in control
of the data sharing process as they have to generate a re-encryption key to enable that their
encrypted identity data is re-encrypted for an authorized service.

We introduce a User Identity Management (UIM) App for smartphones to implement our
vision in a user-friendly way. This app represents a trusted domain to conveniently perform
the cryptographic operations required on the user’s side. Independent from the device used
to initiate the identification and authentication process, the user interacts with the UIM
app on her nowadays typically omnipresent smartphone to cryptographically authorize the
data sharing process. Also, this app can leverage features of modern phones, such as the



Towards Privacy-Preserving and User-Centric Identity Management as a Service 3

trusted execution environment that enables to implement proxy re-encryption while securely
storing the keys bound to the hardware.

This paper is organized as follows: In Section 2, we briefly discuss the background
technologies used in our proposed IDaaS system: OpenID Connect, proxy re-encryption
and the trusted execution environment. In Section 3, we present our proposed IDaaS system,
its architecture, data flow and trust model. Section 4 elaborates on the integration of proxy
re-encryption into the OpenID Connect ecosystem. Section 5 presents how our concept can
be implemented in a user-friendly way with our User Identity Management App. In Section
6, we discuss the model based on our objectives. Finally, in Section 7 we conclude this
paper and present topics for future research.

2 Background Technologies

OpenID Connect: OpenID Connect [Sa14] is an identity layer on top of OAuth 2.0 and
specifies authentication and authorization of users in federated identity management models.
Using OpenID Connect, the SP can delegate the authentication to an IdP. OpenID Connect
offers different authentication flows; the most common one is the authorization code flow as
seen in Figure 1. By the end of this flow, the user is authenticated towards the SP. Knowing
the identity of the user allows the SP to accept or deny access to the protected resource.

Fig. 1: OpenID Connect Authorization Code Flow

The authorization code flow in Figure 1 goes through the following phases: In Phase 1, the
unauthenticated user requests a protected resource, but the SP is not yet able to decide if
she is allowed to access. Therefore, the SP delegates the authentication process to the IdP
(Phase 2) by redirecting the user to the IdP. When redirecting the user, the SP specifies which
identity attributes are needed to reach an access decision. The SP groups these attributes
in so-called scopes and attaches them to the redirect. During authorization (Phase 3), the



4 Pritam Dash, Christof Rabensteiner, Felix Hörandner, and Simon Roth

IdP asks for the user’s consent to share the requested data with the SP. After successful
authentication and authorization, the IdP redirects the user back to the SP. With this redirect,
the IdP passes along the auth-code. The SP uses this auth-code to retrieve the access token
and the ID token directly from the IdP (Phase 4). The access token allows the SP to fetch
user data from the IdP, whereas the ID token identifies the user. In an optional Phase 5, the
SP may retrieve additional user information with the access token. Given the ID token and
user information, the SP can now respond to the initial resource request in Phase 6.

Proxy Re-Encryption: Proxy re-encryption [BBS98] enables a semi-trusted proxy to
transform a ciphertext for one entity to a ciphertext for another entity without revealing the
underlying message to the proxy. The applications of proxy re-encryption are manifold.
Examples are forwarding encrypted emails or sharing encrypted files.

KeyGen(κ) → (skA, pkA) (1)
Enc(M, pkA) → CA (2)
Dec(CA, skA) → M (3)

Basic asymmetric encryption can be described with three algorithms. KeyGen generates a
key pair containing a private key skA and a public key pkA (Eq. 1). Given a public key pkA

and a message M , Enc encrypts the message into a ciphertext CA for the owner of the key
pair to which pkA belongs (Eq. 2). On input of a private key skA and a ciphertext CA, Dec
decrypts the ciphertext CA into M if CA was encrypted for the user who owns the key pair
that includes skA (Eq. 3).

ReKeyGen(skA, pkB) → rkA→B (4)
ReEnc(CA, rkA→B) → CB (5)

Proxy re-encryption introduces two additional operations. ReKeyGen takes the private key
skA of Alice and some key of Bob to create a re-encryption key rkA→B (Eq. 4). Given a
re-encryption key rkA→B, ReEnc transforms the ciphertext CA decryptable by Alice into a
ciphertext CB decryptable by Bob (Eq. 5). Depending on the concrete scheme, re-encrypted
ciphertexts can be re-encrypted again (multi-hop) or not (single-hop).

Trusted Execution Environment: The Trusted Execution Environment (TEE) is an execu-
tion environment that offers confidential and integrity protected data storage and executes
trusted applications. These trusted applications are isolated from the regular execution
environment of the rich OS and can only be accessed through well-defined channels. Many
of today’s mobile devices support the execution of trusted applications on TEE.

3 System Architecture

A typical identity management scenario involves a user that wants to access a protected
resource at a service provider. To facilitate access and to lower the efforts, the service



Towards Privacy-Preserving and User-Centric Identity Management as a Service 5

provider outsources the authentication process to an identity provider. In this section, we
describe the architecture of our IDaaS solution. First, we introduce the main actors and
discuss their setup and interactions in an identity management process utilizing proxy
re-encryption. Then, we discuss the trust relationships and assumptions of our system.

Actors: Our system consists of three actors: the service provider (SP), the identity provider
(IdP), and our User Identity Management App (UIM app). The service provider allows
users to access protected resources or functions from their web browser or mobile app. The
identity provider is responsible for authentication and authorization. The UIM app enables
the interaction between the user and the IdP and handles the user’s involved cryptographic
keys. Figure 2 gives an overview of these actors and their interactions.

Fig. 2: High Level Architecture of our Identity Management Concept

Process: For the IdP to be able to perform such delegated authentication and authorization
and encrypt user data end-to-end, the user has to register at the IdP in a preliminary step.
During registration, the UIM app generates the user’s key pair, encrypts the user’s identity
attributes with her public key, and stores the encrypted attributes at the IdP. The identity
management process visualized in Figure 2 is described in the following steps:

Step 1: The user tries to access a protected resource at a service provider. This service
provider has to make an authorization decision based on the user’s identity. To acquire the
required data, the service provider redirects the user to her preferred IdP.

Step 2: The IdP requests the user’s consent to share data with the SP. Therefore, the IdP
sends a push notification to the UIM app that includes the SP’s certified public key pkSP as



6 Pritam Dash, Christof Rabensteiner, Felix Hörandner, and Simon Roth

well as a list of required attributes. In the UIM app, the user reviews this list and selects the
particular identity attributes she wants to share with the SP.

Step 3: If the user agrees to share data, the Re-Encryption Key Generator component of the
UIM app generates a re-encryption key rkU→SP using the SP’s public key pkSP and the
user’s private key skU . This re-encryption key is sent to the IdP to re-encrypt the selected
attributes for the SP.

Step 4: With the re-encryption key rkU→SP , the IdP transforms the selected identity
attributes cU = (cU1, . . . , cUn) into cSP = ReEnc(cU, rkU→SP) and returns them to the SP.

Step 5: The SP receives the resulting proof of authentication and the re-encrypted attributes
cSP . Then, the SP decrypts these attributes with her private key skSP and is finally able to
either accept or deny access to the originally requested resource.

Trust Model: This section describes the trust relationships between the user and the other
actors. The user trusts the IdP to broker her attributes, but does not want the IdP to know
their plain content. We assume that the IdP acts honest but curious, which means that it
fulfills all protocol requirements, but may perform passive attacks to learn about the user’s
sensitive data to, for example, sell attributes to third parties. We exclude active attacks in our
trust model, since they are more likely to be detected by other parties and thus less appealing.
The user fully trusts the UIM app to handle her identity attributes and private keys, and
to not disclose them to third parties. The app itself can be seen as trustworthy because it
runs on the user’s device and is therefore under her control. Besides the aspect of physical
ownership, the trust in the app boils down to trusting third party code in general, which
is out of scope of this paper. The user trusts the SP to learn and process the user-selected
attributes, but not necessarily all of her data. Furthermore, we assume that the SP does not
collude with the IdP.

4 Integration of Proxy Re-Encryption into OpenID Connect

This section explains how we adapt OpenID Connect such that we preserve the user’s
privacy while keeping interactions user-friendly and user-centric. First, we introduce the
re-encryption key generator and state how cryptographic material is being exchanged prior
to the OpenID Connect authentication sequence. Then, we describe how we adapt the
authentication sequence from Figure 1. Finally, this section discusses the format of the
exchanged data. Table 1 explains the symbols used in the remainder of this section.

Key Generator: The re-encryption key generator (KG) participates in the OpenID Connect
authentication sequence and generates the re-encryption key rkU→SP for the IdP upon
request. To generate this re-encryption key, the KG requires access to skU and therefore has
to be fully trusted. The KG generates the rkU→SP if and only if the user agrees to share her
attributes with the presented SP. This condition gives the user control over her attributes,
because it prevents the IdP from requesting re-encryption keys for not approved parties. The



Towards Privacy-Preserving and User-Centric Identity Management as a Service 7

U user ni attribute name
vi attribute value ai = (ida, ni, vi) attribute tuple
ida att. set identifier σI (ai) signature of ai by I
I issuer a = (ai, σI (ai))1≤i≤m U’s bundled attributes
pkU U’s public key cUi = Enc((ai, σI (ai)), pkU ) ai , signed by I, encrypted by U
skU U’s private key cSPi = Enc((ai, σI (ai)), pkSP) ai , signed by I, encrypted by SP
pkSP SP’s public key cU = (cU1, . . . , cUm) attributes, encrypted by U
rkU→SP re-encryption key cSP = (cSP1, . . . , cSPn) attributes, encrypted by SP
CERTSP certificate of SP t = (t1, . . . , tr ) transactional information

Tab. 1: Symbols and Explanation

KG can be implemented in different ways, e.g. as a server within a company network or as a
browser extension. In our scenario, the KG runs in the TEE of a mobile device.

Setup: Before the authentication sequence can take place, we ensure that each party
possesses the necessary cryptographic material, namely pkSP and cU . Firstly, the SP has
to provide pkSP to the IdP, as the IdP needs this key when requesting rkU→SP from the
KG. Concretely, the exchange of pkSP between SP and IdP can be achieved through the
Dynamic Client Registration specification [SBJ11], which offers a dedicated parameter
for key exchanges within the Client Metadata. In order to protect origin and integrity of
pkSP , we wrap it in the certificate CERTSP , which is issued by a trusted third party. The
certificate contains identity information about the requesting SP thath helps the user decide
with whom she wants to her share data. Secondly, prior to the authentication sequence, the
user encrypts both attributes and corresponding signatures into cU . These attributes can
either be signed by the user (self-issued) or by a third party issuer. The user then deposits
cU at the IdP, so that the IdP can re-encrypt and share the identity attributes during the
authentication sequence.

Authentication Sequence Adaption: We integrate changes into the OpenID Connect
authentication sequence from Figure 1 and depict these changes in Figure 3. The changes
affect the authorization phase, where the IdP requests rkU→SP , and the token retrieval
phase, where the IdP and the SP handle and exchange the encrypted attributes.

In the authorization phase, the IdP asks the user if and which scopes can be shared with
the SP. We alter this phase by tying in the request for rkU→SP . This way, we combine
both questions of authorization (“Which scopes can be shared?” and “Can we generate
a re-encryption key for SP?”) into one single user interaction. While asking for consent,
the IdP passes both the CERTSP and the scopes to the KG (Figure 3, I). The KG verifies
the integrity and authenticity of pkSP (II) and presents both identity of SP and requested
scopes to the user when asking for consent (“Would you like to share <scopes> with SP?”)
in Step III. The user reviews the request and agrees to share the requested scopes with
SP (IV). With the user’s permission, the KG generates rkU→SP = ReKeyGen(skU, pkSP) in



8 Pritam Dash, Christof Rabensteiner, Felix Hörandner, and Simon Roth

Step V and returns rkU→SP to the IdP (VI). In the token retrieval phase, the IdP re-encrypts

Fig. 3: OpenID Connect Authorization Code Flow with Proxy Re-Encryption Integration

and forwards the user’s attributes to the SP. In Step VII, the IdP selects the authorized
attributes from cU and transforms them into cSP = ReEnc(cU, rkU→SP). The IdP combines
the re-encrypted attributes cSP with transactional information t such as, the issue time and
intended audience. This combined data and its signature σIdP(t∪ cSP) is then forwarded to
the SP (VIII). After receiving cSP , the SP uses its private key skSP to decrypt the signed
attributes a = Dec(cSP, skSP) (IX). Step VIII and Step XI happen when the ID token is
retrieved or data is fetched from the UserInfo Endpoint.

Format: The parameters exchanged in Figure 3 are structured and encoded as follows:
CERTSP is encoded as a X.509 certificate and rkU→SP as a JSON Web Key (JWK). JSON Web
Signatures (JWS) are used for individual attribute tuples ai and for the set t ∪ cSP . Each
encrypted identity attribute cUi (resp. cSPi) is wrapped in JSON Web Encryption (JWE) by
itself. Signing and encrypting attributes individually allows the IdP to exclusively select
attributes that have been authorized by the user and to re-encrypt them for the SP. The
attribute set identifier ida is shared between bundled attributes (e.g. name and birthday)
and prevents a user from combining attributes that do not belong together. We use a hybrid
scheme between proxy re-encryption and symmetric encryption to encrypt attributes. This
scheme combines the features of the former with the efficiency of the latter. The tuple
(ai, σI (ai)) is encrypted with a symmetric cipher, whereas the symmetric content encryption
key is encrypted, re-encrypted, and decrypted with a proxy re-encryption cipher.

5 User Identity Management App

In this section, we propose a mobile app for key generation and handling authorization
decisions. First, we discuss why a mobile app is a suitable platform. Then, we explain



Towards Privacy-Preserving and User-Centric Identity Management as a Service 9

implementation details including the app’s structure, communication channels, interaction
and cryptographic processes. Finally, we conclude this section describing how the UIM app
improves usability, for example, by minimizing user interaction.

Platform Choice: As the re-encryption key is generated from the user’s private key, this
process has to be performed inside the user’s trusted domain. We enable the management of
the user’s identity and especially the generation of re-encryption keys through a mobile app
due to the following benefits: Firstly, the ubiquity of mobile phones eliminates the need
for installing software (e.g. desktop application, browser extension) and distributing the
user’s private key across multiple stationary devices, from which the identity transaction
is initiated. A dedicated server could also be used for re-encryption key generation, but
costs for deployment and maintenance are only viable for large user groups (e.g. company
employees) and not for end users. Secondly, the TEE offers better protection of the key
material than software based storages of web applications.

Components: The UIM app has two parts, namely the client application operating in the
rich OS and the key generator operating as trusted application in the Trusted Execution
Environment (TEE). Security critical operations involving the user’s private key are
performed in the TEE, which is a processor feature enabled in most modern mobile devices.
Regular operations such as user interaction to select scopes and grant permissions are
performed in the rich OS platform. Once the user installs the UIM app and registers at the
IdP, the app generates a key pair (skU, pkU ) for the user in the TEE. The key generation
operation in the TEE processor is isolated from the rest of the system using memory and
I/O protection mechanisms. In our design, the user’s private key never leaves the TEE.
Also, the user’s identity attributes are collected during the registration process. The UIM
app signs these attributes a = (a1, . . . , am), encrypts both attributes and signatures into
cU = (cU1, . . . , cUn), and deposits the encrypted attributes at the IdP.

Notification: When the IdP requires user consent for sharing information with the SP, the
user receives a push notification on her mobile device. The UIM app verifies the CE RTSP

and displays the identity of the requesting SP and the requested attributes. With just one
click the user can express her consent, and then the KG generates a re-encryption key. Since
the user’s private key is used for generating the re-encryption key, the KG runs in the TEE
to generate the rkU→SP , thereby, making it impossible for untrusted applications or other
attacks on the mobile phone to extract the private key. The UIM app generates the keys once
in a mobile device which the user always has on her, and thereafter, the user can access
services from any device.

User-friendliness: A major advantage offered by our solution is that it is not required to
distribute and maintain private key copies on all devices that should be used in an identity
management process. Key-generation and authorization is a one-time process. The user’s
selections are remembered and suggested for reuse in subsequent authentication requests.
Convenient (biometric) authentication mechanisms can also be integrated through flexible
frameworks such as FIDO and WebAuthn.



10 Pritam Dash, Christof Rabensteiner, Felix Hörandner, and Simon Roth

6 Discussion

In this section, we discuss our IDaaS solution with respect to end-to-end confidentiality,
user-centricity, key security, usability, and ease of integration:

End-to-end Confidentiality: Our goal is to achieve end-to-end confidentiality for identity
data when stored in public cloud. We are able to fulfill this objective by integrating proxy
re-encryption with OpenID Connect, which prevents an honest but curious IdP from
accessing identity data in plaintext. The user’s data can still be shared with authorized
SPs by re-encrypting the ciphertext using a re-encryption key rkU→SP . Thus, our IDaaS
solution provides enhanced privacy for identity provisioning.

User-Centric Control: The UIM app gives users full control over the data sharing process,
as explicit consent from the user is required during the authentication and authorization
process to generate the re-encryption keys. The IdP controls only the re-encryption process.
Unlike [NA14], where a representative entity generates re-encryption key for all the users
it represents, our approach allows its users to generate re-encryption keys themselves.
This empowers the users to choose and trust SPs individually. Since the re-encryption key
depends on the user’s private key, the IdP cannot share data without user consent. This
makes our IDaaS solution user-centric by design.

Key Security: The UIM app generates and stores cryptographic keys within the user’s
mobile device. More precisely, the user’s private key is stored in the mobile device’s TEE
and the re-encryption key generation based on this private key is also performed in this
environment. As the user’s private key cannot be extracted from the TEE, unauthorized
apps or other attacks on the mobile device can also not obtain this key material.

Usability: In our solution, the UIM app is the central actor for key-generation, encryption,
authentication and authorization. Users do not have to install any additional software or
browser-plugin for each computer or devices she uses to access protected services. Besides,
single-sign-on (SSO), the UIM app ensures minimal user interaction; information about the
user’s recent authentication is stored and can be reused to complete a subsequent authenti-
cation request without requiring user interaction. The user generates her cryptographic keys
and re-encryption key for a particular service provider only once and thereafter, she can
access the SP’s protected resources from any device. In addition, the user can change her
initial authorization decisions anytime using the UIM app inducing the letter to request the
deletion of the generated re-encryption keys by the IdP.

Ease of Integration: To adopt our IDaaS solution, existing service providers only have
to perform two steps: SP’s have to register their certificates CE RTSP at the IdP during
dynamic registration and implement a decryption function for the re-encrypted attributes. In
general, we designed our approach of integrating proxy re-encryption into OpenID Connect
so that changes to existing OpenID Connect deployment are kept to a minimum. We used
established protocols and stayed close to their existing configurations and setting. Hence,
our approach enables a convenient integration into existing infrastructures and protocols.



Towards Privacy-Preserving and User-Centric Identity Management as a Service 11

Limitation: While our contribution focused on confidentiality aspects in identity manage-
ment, we do not provide unlinkability and anonymity between federated identity provider
and service providers. Hence, it is evident to mention that the proposed IDaaS tackles the
privacy concerns related to data curious behavior of the IdP, whereas preventing the IdP to
profile the user’s behavior across services is beyond the scope of this paper.

7 Conclusion and Future Work

We proposed a privacy-preserving, user-centric and user-friendly identity management
solution consisting of two parts: Firstly, we integrated proxy re-encryption into OpenID
Connect to ensure end-to-end data confidentiality for identity provisioning in both web-based
and mobile applications. When a service provider requires identity data, these selected
attributes are re-encrypted upon user consent, and by design only the service provider can
decrypt the attributes. Users stay in control as they have to generate a re-encryption key to
enable the data sharing process. Also, this key generation only has to happen once per service
provider, so the solution requires less user interaction. Secondly, to concretely implement our
vision, we introduced a User Identity Management (UIM) App for nowadays omnipresent
smart phones which takes the user’s perspective into account. This app represents a trusted
domain to conveniently perform the cryptographic operations on the user’s side. The user
only has to install this app once on her phone which she typically always has with her and
does not have to install additional software to provision key material for each computer,
tablet or other device she is using to initiate the transactions. This app also employs the TEE
which is becoming increasingly available on modern phones to store the user’s private keys
while being flexible enough to support the integration of arbitrary cryptographic schemes
needed to implement proxy re-encryption. As the user’s private key never leaves the TEE, it
is also more secure against attacks on the phone.

For future development, we plan to add a key recovery functionality in our proposed system,
where users will have the capability to recover key material when necessary in a secure
and trusted manner. Additionally, we plan to implement our approach within the e-Health,
e-Business, and e-Government pilots specified by the CREDENTIAL3 project. We also
plan to integrate proxy re-encryption with redactable signatures [Jo02] to achieve selective
disclosure on parts of a signed document. Furthermore, we plan to work on integrating
conditional proxy re-encryption [We09], which would further reduce the trust required in
the identity provider by limiting for which data a re-encryption key can be (mis-)used.

Acknowledgments

This research was supported by the CREDENTIAL project, which received funding by the
European Union’s Horizon 2020 research and innovation programme under grant agreement
No 653454.
3 CREDENTIAL: Secure Cloud Identity Wallet, https://credential.eu/



12 Pritam Dash, Christof Rabensteiner, Felix Hörandner, and Simon Roth

References
[BBS98] Blaze, M.; Bleumer, G.; Strauss, M.: Divertible Protocols and Atomic Proxy Cryptography.

In: Advances in Cryptology — EUROCRYPT’98, volume 1403 of Lecture Notes in
Computer Science, pp. 127–144. 1998.

[Ca09] Cantor, S.; Kemp, J.; Philpott, R.; Maler, E.: Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0 - Errata Composite. 2009.

[CS10] Chen, Y.; Sion, R.: On Securing Untrusted Clouds with Cryptography. In: Proceedings of
the 9th Annual Workshop on Privacy in the Electronic Society. ACM, pp. 109–114, 2010.

[GN09] Goodner, M.; Nadalin, A.: Web Services Federation Language (WS-Federation) Version
1.2. 2009.

[Hö16] Hörandner, F.; Krenn, S.; Migliavacca, A.; Thiemer, F.; Zwattendorfer, B.: CREDENTIAL:
A Framework for Privacy-Preserving Cloud-Based Data Sharing. In: 11th International
Conference on Availability, Reliability and Security. 2016.

[Jo02] Johnson, R.; Molnar, D.; Song, D. Xiaodong; Wagner, D.: Homomorphic Signature
Schemes. In: CT-RSA 2002, The Cryptographer’s Track at the RSA Conference, 2002, San
Jose, CA, USA. pp. 244–262, 2002.

[LZ10] Leitold, H.; Zwattendorfer, B.: STORK: Architecture, Implementation and Pilots. In: ISSE
2010 - Securing Electronic Business Processes, Highlights of the Information Security
Solutions Europe Conference. Vieweg+Teubner, pp. 131–142, 2010.

[NA14] Nuñez, D.; Agudo, I.: BlindIdM: A Privacy-Preserving Approach for Identity Management
as a Service. International Journal of Information Security, 13(2):199–215, 2014.

[NAL12] Nuñez, D.; Agudo, I.; Lopez, J.: Integrating OpenID with Proxy Re-Encryption to Enhance
Privacy in Cloud-Based Identity Services. In: 2012 IEEE 4th International Conference on
Cloud Computing Technology and Science. IEEE, pp. 241–248, 2012.

[Sa14] Sakimura, N.; Bradley, J.; Jones, M.; de Medeiros, B.; Mortimore, C.: OpenID Connect
Core 1.0. 2014.

[SBJ11] Sakimura, N.; Bradley, J.; Jones, M.: OpenID Connect Dynamic Client Registration 1.0.
2011.

[We09] Weng, J.; Deng, R. H.; Ding, X.; Chu, C.; Lai, J.: Conditional Proxy Re-Encryption Secure
Against Chosen-Ciphertext Attack. In: ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2009, Sydney, Australia. pp. 322–332, 2009.

[ZS15] Zwattendorfer, B.; Slamanig, D.: Design Strategies for a Privacy-Friendly Austrian eID
System in the Public Cloud. Computers & Security, 52:178–193, 2015.

[ZS16] Zwattendorfer, B.; Slamanig, D.: The Austrian eID Ecosystem in the Public Cloud: How
to Obtain Privacy while Preserving Practicality. Journal of Information Security and
Applications, 27-28:35–53, 2016.

[Zw14] Zwattendorfer, B.; Slamanig, D.; Stranacher, K.; Hörandner, F.: A Federated Cloud Identity
Broker-Model for Enhanced Privacy via Proxy Re-Encryption. In: IFIP International
Conference on Communications and Multimedia Security. Springer, pp. 92–103, 2014.


	Introduction
	Background Technologies
	System Architecture
	Integration of Proxy Re-Encryption into OpenID Connect
	User Identity Management App
	Discussion
	Conclusion and Future Work

